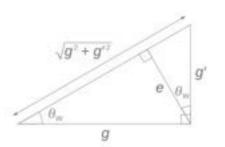

An Introduction to the Standard Model of Particle Physics

University of Chinese Academy of Sciences Deshan Yang

2021 Pre SUSY Summer School · Beijing · Aug.9-13

In memory of Steven Weinberg — one of founding fathers of the Standard Model of Particle Physics

<text><text><equation-block></equation-block></text></text>	methods particle coupled is X_{1}^{*} pic to a fitting we gap group and a di the sinteness spin T_{1} and the observation by particulars T_{1} , log ,
We have closen for place of the R held to make V Trills to make the meson apportation raise in	Cy trail, and run also adjust the plant of the i run" real. The "physical" is fields are then a
liter	
Total D. Nowes .: PHYSICAL R.	
taken tany seriesaly, hat it is worth keeping in mirel that the standard calculation" of the shottom-andries rouge section may well be wrong. In the multi-beneresiliable ? We smally	ed., S. Presid <u>25</u> , 101 Editor. A model and real discussion by A. Opathon, Nucl. Phys. 198915, No. And Affordation, Nucl. Phys.


reveluention theory is test for how many, edds A, where pairing are available contribution from the increase repeating of shortd eccentration. See 5. We Plan, Kow. Labora 22, ed. 1000, supposing to 5, 0. Materiague, Plan, barbara 220, ed. 10007, b. dissease, R. Marchano, and K. Wenteng, Phys. Sciences 25, 109 (2007), So. 527 (2007), T. S. J. and S. Wenteng, Phys. Rev. 55, 000 (2007), T. S. J. and S. W. Singer, Phys. Rev. 55, 000 (2007), T. S. J. and S. S. Marchano, and K. Wenteng, Phys. Rev. 50, 000 (2007), So. 527 (2007), T. S. J. and S. S. Marchano, S. S. Sterlinger, Phys. Rev. 55, 000 (2007), T. S. J. S. Sterlinger, Phys. Rev. 56, 000 (2007), T. S. J. S. Sterlinger, Phys. Rev. 56, 000 (2007), T. S. S. Sterlinger, Phys. Rev. 56, 000 (2007), T. S. S. Sterlinger, Phys. Rev. 56, 000 (2007), T. S. S. Sterlinger, Phys. Rev. 56, 000 (2007), T. S. S. Sterlinger, Phys. Rev. 56, 000 (2007), T. S. S. Sterlinger, Phys. Rev. 56, 000 (2007), T. S. Sterlinger,

> community the conductivity F couplings to the data and the translation (Figs. Into Learning 2), 101 1. The F requestion with dominative coupling tertile dimensionless tagenegies in an interactivity dimension and the second experiments and second sec

"B. P. Pepsens and B. Sell-Bare, Phys. Rev. 325, 100 (1997).

Status II, Science II FITYIOCAL R	SVIEW LETTERS School	101
	We new innovaliately that the electron may in $\mathrm{Hil}_{\mathrm{p}}^{-}$. The charged spin-1 field is	۰.
The condition that is, have been become paper- tation ratios to all uniters of participation the- ery tolls on that of P.M.//Ib, and Decedors the	n ⁿ - 1	*
Solid or, but mans if, while or, and of have mans perce. But we can satily one that the Orthestone		
macon represented by pa and a" here to plan-	Hg-14.	
test coupling. The Lagrangian is gauge lover- task, as an est-perform a coublished polytic	The undersitapose is fields of definitive space	in the second
and hypercharge gauge transformation which elements x^{-1} and x_{0} procyations ² without places ing asymptotic data. We will see that G_{0} is easy	$\mathcal{T}_{\mu} = (g^{\mu},g^{\mu})^{-\mu\mu}(g^{\mu}_{\mu}^{\mu},g^{\mu}_{\mu}^{\mu}),$	-
scendl, and is any care if, might in vary large," as its v, regatings will also be distrigated to the billowing.	$\boldsymbol{A}_{p} = (q^{\alpha} + q^{\alpha})^{-\alpha \alpha} (-q^{\alpha} \boldsymbol{A}_{p}^{-1} + q \boldsymbol{B}_{p}).$	9.0
The effect of all this is part to register p ex-	Their manen are	
(a)++(⁴) =	$M_{g} + (b)g^{\mu} + g^{\mu})^{\mu\nu},$	0.0
The first fact large to if remain space, while the rest of the Lagrangian buckness	Ma+4,	-
-445/914_17+18_17()		2
$-(F^{0}gd_{\mu}^{-1}-g^{-}d_{\mu}^{-}f^{-}dd_{\mu}^{-}da_{\mu}^{-}) =$	The Scherartise Scheralized as the plates in The Scherartise Scherase Software and spin	
$\begin{array}{c} \frac{H}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^{2} \left(\frac{1}{2} + \frac{1}{2} \right)^{\frac{1}{2}} \left(\frac{1}{2} \right)^{\frac{1}{2}} \left(\frac{1}{2} + \frac{1}{2} \right)^{\frac{1}{2}} \left(1$	${}^{i_{kl}}_{\mu}$ $\left[\frac{1}{2}{}^{i_{k}}_{-i_{k}}{}^{i_{k}}\right]p_{1}{}^{i_{k}}_{\mu}$ $= p_{1}{}^{i_{k}}\gamma_{i_{k}}$ $= p_{1}{}^{i_{k}}[x_{i_{k}}]$	
We see that the intimulant similar design	To the most have to at with the coupling	
**************************************	of the under internation mann Z _a . It does not couple to before that the best	100
and, summing the W_{\pm} mights at small is had to not and dense, the sense roughts contain of small interactions is given by	In loss for effects of J_{ab} is to check our of the set of the state of the state of the set of	ntrus Not
0_1/5-2164_2-1/br. in	a la lasardaritas la	
have that then the $r-r$ coupling constant in $C_{r} + M_{r} / r + P^{*}M_{r} C_{m}^{-10} + L + 1 \times 10^{-1}.$	$\frac{d_{W}}{dt} a_{\mu} (1 + c_{\mu})^{\mu} \frac{(2\mu^{\mu} \cdot \mu^{\mu})}{(2\mu^{\mu} \cdot \mu^{\mu})} a^{\mu} + (2\mu^{\mu} \cdot \mu^{\mu})^{\mu} + (2\mu^{\mu} \cdot \mu$	d
The recepting of al, to make an alternate by a	Types lies yey', and his is but the or	_

If ρ is a lines ρ is ρ' , and links in bard the small r,r is a structuring statistical distance from an even barbon i. B ρ is the state $\rho(\sigma', \sigma)$ will be inside the state of th

A spherical indexiductions to the nutrice and and atoms of modern phone heithant and, meeting event on its photosophic al supportations

DREAMS OF A FINAL THEORY

The Scientist's Search for the Ultimate Laws of Nature

STEVEN WEINBERG

Steven Weinberg (1933–2021)

https://en.wikipedia.org/wiki/Steven_Weinberg

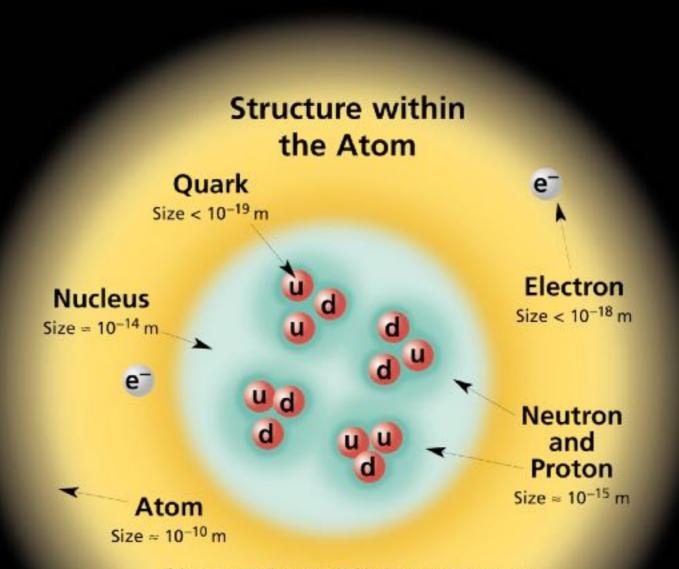
OUTLINE

Brief introduction to (elementary) particle physics

The Standard Model

 Some basics of field theory: gauge symmetry, chiral fermion, Spontaneous symmetry breaking (SSB), gauge anomaly ...

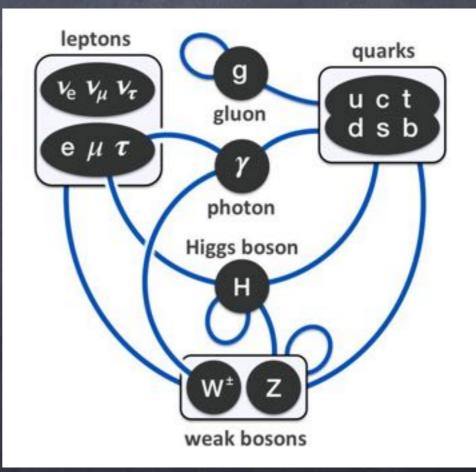
- Constructions of the SM Lagrangian (top-down)
- Interactions after SSB
- Successes of the SM

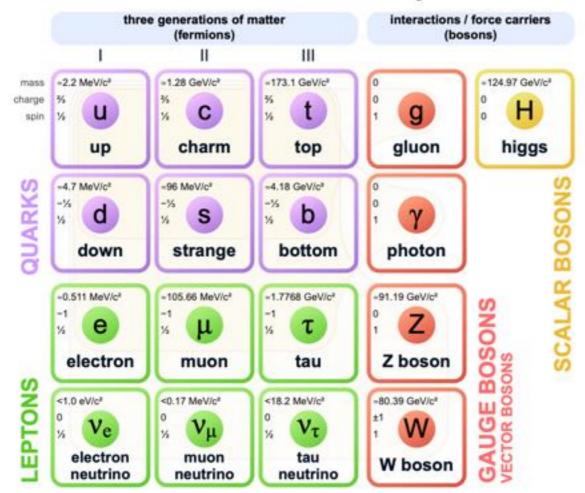

Unsatisfying issues in the SM

Summary & Prospects

What is particle physics

- Due to Wikipedia: <u>Particle physics</u> is a branch of physics that studies the nature of the particles that constitute matter and radiation.
- It probes the structure of our universe at the shortest scale. Due to the uncertainty principle, the short scale corresponds to high energy. Therefore, particle physics is also called high energy physics.
- Core topics:
 - What are elementary constitutions of matter?
 - How do they interact?
 - How do they form more complex matter states?
 - Can the descriptions about all particles and their fundamental interactions be unified into an ultimate theory? And if so, what is it?


The modern view of the subatomic world



If the protons and neutrons in this picture were 10 cm across, then the quarks and electrons would be less than 0.1 mm in size and the entire atom would be about 10 km across.

Four fundamental interactions

- Electromagnetism: The source of various forces in a common world ; interactions among electro-charged particles mediated by photons;
- Strong interactions: The bound between nucleons; interactions among quarks and gluons mediated by gluons;
- Weak interactions: β decays, nuclear fusion... mediators are W/Z bosons;
- Gravity: Interactions among everything (mediated by gravitons?); It is all about space-time and matters due to Einstein.

Standard Model of Elementary Particles

• spin-1/2: 3 families of quarks and

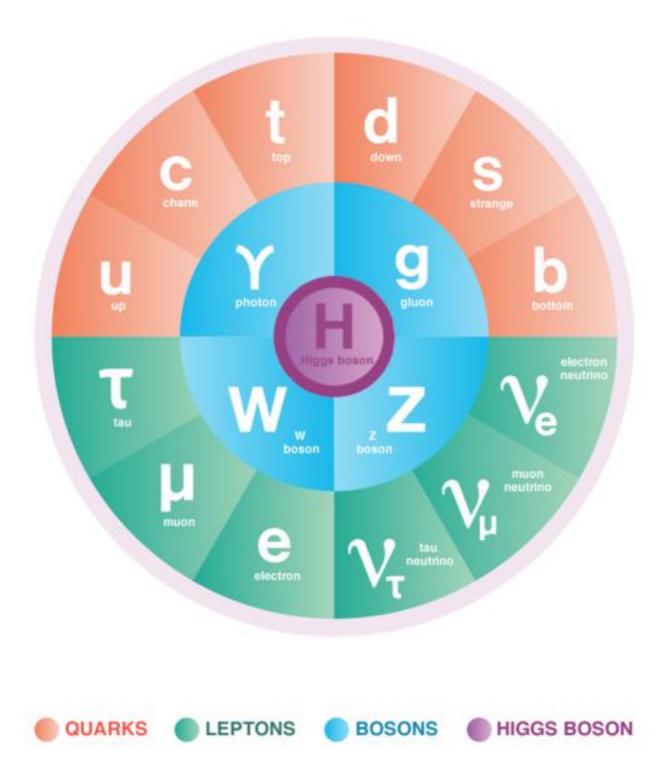
leptons;

• spin-1: gluons, W/Z bosons, photons; • spin-O: Higgs (The God Particle)

Fermions-matter constituents

Lep	tons spin =1/2	2	Quar	ks spin	=1/2
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge
VL lightest neutrino*	(0-2)×10 ⁻⁹	0	u _{up}	0.002	2/3
e electron	0.000511	-1	d down	0.005	-1/3
$\mathcal{V}_{\mathbf{M}}$ middle neutrino*	(0.009-2)×10 ⁻⁹	0	C charm	1.3	2/3
μ muon	0.106	-1	S strange	0.1	-1/3
\mathcal{V}_{H} heaviest neutrino*	(0.05-2)×10 ⁻⁹	0	t top	173	2/3
τ _{tau}	1.777	-1	b bottom	4.2	-1/3

CPEPphysics.org


Bosons-force carriers

	BO	SONS	force carrier spin = 0, 1,	
Unified Ele	ectroweak	spin = 1	Strong (c	olor)
Name	Mass GeV/c ²	Electric charge	Name	Ma Ge
γ photon	0	0	g gluon	1
w-	80.39	-1	Higgs Boson	
W+ W bosons	80.39	+1	Name	Ma Ge
Z ⁰ Z boson	91.188	0	H Higgs	1

Strong (color) s	pin = 1	
Name	Mass GeV/c ²	Electric charge	
g gluon	0	0	
Higgs Boson spin = 0			
Name	Mass GeV/c ²	Electric charge	

C 2016 Contemporary Physics Education Project CPEPphysics.org

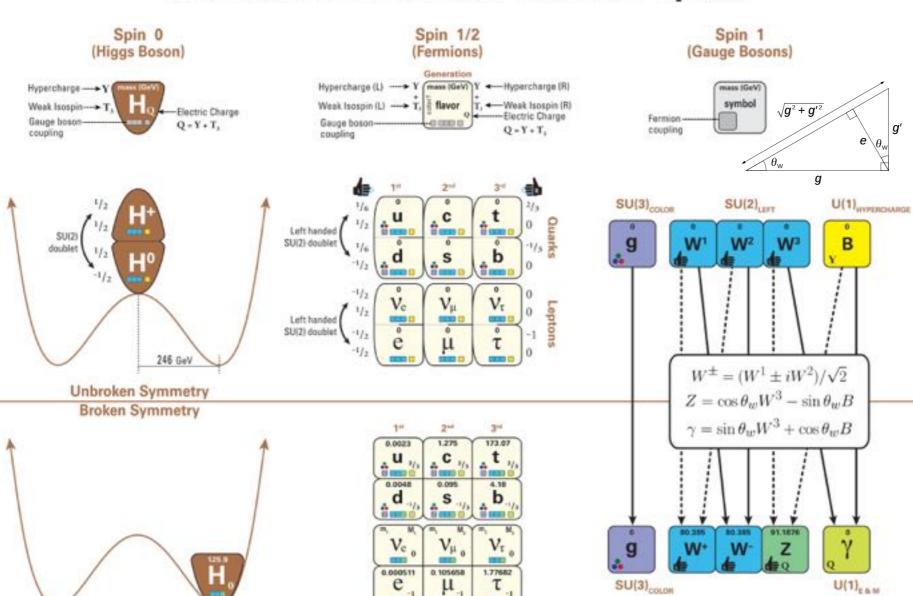
The Standard Model — the periodic table of elementary particles

The Standard Model of Particle Physics

HIGGS BOSON

Discovered in:	Mass:	
2012	125.7 GeV	
Discovered at:	Charge:	Spin:
CERN	0	0

About:


Discovered in 2012, the Higgs boson was the last missing piece of the Standard Model puzzle. It is a different kind of force carrier from the other elementary forces, and it gives mass to quarks as well as the W and Z bosons. Whether it also gives mass to neutrinos remains to be discovered.

Higgs bosons: The last 券 for the SM

symmetrymagazine.org

symmetry () ENERGY Office

SM as a gauge field theory • a spontaneously broken $SU_C(3) \times SU_L(2) \times U_Y(1)$ chiral gauge field theory to describe strong interactions (QCD), weak interactions & electromagnetism (EW);

The Standard Model of Particle Physics

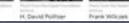
 $-\frac{1}{3}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{3}g^{2}_{s}f^{abc}f^{abc}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{c}_{\nu} +$ $\frac{1}{2}ig_s^2(\bar{q}_i^a\gamma^\mu q_i^a)g_\mu^a + \tilde{G}^a\partial^2 G^a + g_sf^{abc}\partial_\mu \tilde{G}^a G^b g_\mu^c - \partial_\nu W_s^+ \partial_\nu W_a^- -$ 2 $M^2 W^+_{\mu} W^-_{\mu} - \frac{1}{2} \partial_{\nu} Z^0_{\mu} \partial_{\nu} Z^0_{\mu} - \frac{1}{2\nu^2} M^2 Z^0_{\mu} Z^0_{\mu} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - \frac{1}{2} \partial_{\mu} H \partial_{\mu} H$ $\frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{c^{2}} - \frac{1}{2c^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{c^{2}} - \frac{1}{2c^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{c^{2}} - \frac{1}{2c^{2}}M\phi^{0}\phi^{0} - \frac{1}{2c^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{c^{2}} - \frac{1}{2c^{2}}M\phi^{0}\phi^{0} - \frac{1}{2c^{2}}M\phi^{0} - \frac{1}{2c^{2}}M\phi^{0}\phi^{0} - \frac{1}{2c^$ $\frac{2M}{a}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{a^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^-_\nu W^+_{\nu}W^-_{\mu}) - Z^0_{\nu}(W^+_{\mu}\partial_{\nu}W^-_{\mu} - W^-_{\mu}\partial_{\nu}W^+_{\mu}) + Z^0_{\mu}(W^+_{\mu}\partial_{\nu}W^-_{\mu} W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{+}W_{\mu}^{-})]$ $W^{-}_{\mu}\partial_{\nu}W^{+}_{\mu}) + A_{\mu}(W^{+}_{\nu}\partial_{\nu}W^{-}_{\mu} - W^{-}_{\nu}\partial_{\nu}W^{+}_{\mu})] - \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\mu}W^{+}_{\nu}W^{-}_{\mu} +$ $\frac{1}{2}g^2 W_{\mu}^+ W_{\nu}^- W_{\mu}^+ W_{\nu}^- + g^2 c_w^2 (Z_{\mu}^0 W_{\mu}^+ Z_{\nu}^0 W_{\nu}^- - Z_{\mu}^0 Z_{\mu}^0 W_{\nu}^+ W_{\nu}^-) +$ $g^{2}s_{\mu}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} W^{+}_{\nu}W^{-}_{\mu}) - 2A_{\mu}Z^{0}_{\mu}W^{+}_{\nu}W^{-}_{\nu}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] \frac{1}{8}g^{2}\alpha_{h}[H^{4}+(\phi^{0})^{4}+4(\phi^{+}\phi^{-})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}]-\frac{1}{8}g^{2}\alpha_{h}[H^{4}+(\phi^{0})^{4}+4(\phi^{+}\phi^{-})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}]-\frac{1}{8}g^{2}\alpha_{h}[H^{4}+(\phi^{0})^{4}+4(\phi^{+}\phi^{-})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}]-\frac{1}{8}g^{2}\alpha_{h}[H^{4}+(\phi^{0})^{4}+4(\phi^{+}\phi^{-})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}]-\frac{1}{8}g^{2}\alpha_{h}[H^{4}+(\phi^{0})^{4}+4(\phi^{+}\phi^{-})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}]-\frac{1}{8}g^{2}\alpha_{h}[H^{4}+(\phi^{0})^{4}+4(\phi^{+}\phi^{-})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}]-\frac{1}{8}g^{2}\alpha_{h}[H^{4}+(\phi^{0})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}]-\frac{1}{8}g^{2}\alpha_{h}[H^{4}+(\phi^{0})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}]-\frac{1}{8}g^{2}\alpha_{h}[H^{4}+(\phi^{0})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}]-\frac{1}{8}g^{2}\alpha_{h}[H^{4}+(\phi^{0})^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}\phi^{+}+2(\phi^{0})^{$ $gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) W^-_{\mu}(\phi^0\partial_{\mu}\phi^+ - \phi^+\partial_{\mu}\phi^0)] + \frac{1}{2}g[W^+_{\mu}(H\partial_{\mu}\phi^- - \phi^-\partial_{\mu}H) - W^-_{\mu}(H\partial_{\mu}\phi^+ - \phi^-\partial_{\mu}H)] + \frac{1}{2}g[W^+_{\mu}(H\partial_{\mu}\phi^- - \phi^-\partial_{\mu}H) - W^-_{\mu}(H\partial_{\mu}\phi^+ - \phi^-\partial_{\mu}H)]$ $\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{\nu}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\frac{s_{\mu}^{*}}{c_{\nu}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) +$ $igs_w MA_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) - ig \frac{1-2e_w^2}{2e_\mu} Z^0_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) +$ $igs_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - \frac{1}{4}g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] \frac{1}{4}g^2 \frac{1}{c^2} Z^0_{\mu} Z^0_{\mu} [H^2 + (\phi^0)^2 + 2(2s^2_{\mu} - 1)^2 \phi^+ \phi^-] - \frac{1}{2}g^2 \frac{s^2_{\mu}}{c} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- +$ $W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{\mu}^{*}}{c}Z_{\mu}^{0}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-} +$ $W^{-}_{\mu}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) - g^{2}\frac{iu}{c_{w}}(2c_{w}^{2} - 1)Z^{0}_{\mu}A_{\mu}\phi^{+}\phi^{-} - G^{0}_{\mu}A_{\mu}\phi^{+}\phi^{-})$ $g^{1}s_{w}^{2}A_{a}A_{\mu}\phi^{+}\phi^{-} - \bar{e}^{\lambda}(\gamma\partial + m_{e}^{\lambda})e^{\lambda} - \bar{\nu}^{\lambda}\gamma\partial\nu^{\lambda} - \bar{u}_{i}^{\lambda}(\gamma\partial + m_{a}^{\lambda})u_{i}^{\lambda} -$ 3 $d_i^{\lambda}(\gamma \partial + m_d^{\lambda})d_i^{\lambda} + igs_w A_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_i^{\lambda}\gamma^{\mu}u_i^{\lambda}) - \frac{1}{3}(\bar{d}_i^{\lambda}\gamma^{\mu}d_i^{\lambda})] +$ $\frac{ig}{ic} Z^0_{\mu}[(\hat{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\hat{e}^{\lambda}\gamma^{\mu}(4s^2_{w}-1-\gamma^{5})e^{\lambda}) + (\bar{u}^{\lambda}_{i}\gamma^{\mu}(\frac{4}{3}s^2_{w} (1 - \gamma^5)u_j^{\lambda}) + (\bar{d}_j^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_w^2 - \gamma^5)d_j^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^+[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda}) + \bar{\nu}^{\lambda}]$ $(\bar{u}_i^\lambda \gamma^\mu (1 + \gamma^5) C_{\lambda\kappa} d_i^\kappa)] + \frac{ig}{\pi \sqrt{3}} W^-_\mu [(\bar{e}^\lambda \gamma^\mu (1 + \gamma^5) \nu^\lambda) + (\bar{d}_i^\kappa C^\dagger_{\lambda\kappa} \gamma^\mu (1 + \gamma^5) \nu^\lambda)]$ $\gamma^{5}(u_{i}^{\lambda})] + \frac{ig}{2\sqrt{5}} \frac{m_{i}^{5}}{M} [-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})] \frac{g}{2} \frac{m_s^{\lambda}}{M} \left[H(\bar{e}^{\lambda} e^{\lambda}) + i\phi^0(\bar{e}^{\lambda} \gamma^5 e^{\lambda}) \right] + \frac{ig}{2M\gamma^2} \phi^+ \left[-m_d^{\kappa}(\bar{u}_j^{\lambda} C_{\lambda\kappa}(1 - \gamma^5) d_j^{\kappa}) + \right]$ $m_u^{\lambda}(\hat{u}_j^{\lambda}C_{\lambda\kappa}(1+\gamma^5)d_j^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^-[m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa})]$ $\gamma^{5}[u_{j}^{s}] - \frac{g}{2} \frac{m_{\lambda}^{5}}{M} H(\bar{u}_{j}^{\lambda}u_{i}^{\lambda}) - \frac{g}{2} \frac{m_{J}^{2}}{M} H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda}) + \frac{ig}{2} \frac{m_{\lambda}^{5}}{M} \phi^{0}(\bar{u}_{j}^{\lambda}\gamma^{5}u_{j}^{\lambda}) \frac{m_{2}^{2}}{52}\phi^{0}(\bar{d}_{i}^{5}\gamma^{5}d_{i}^{5}) + [\bar{X}^{+}(\partial^{2}-M^{2})X^{+} + \bar{X}^{-}(\partial^{2}-M^{2})X^{-} + \bar{X}^{0}(\partial^{2}-M^{2})X^{-}]$ $\frac{M^2}{d^2}X^0 + \bar{Y}\partial^2 Y + igc_w W^+_\mu (\partial_\mu \bar{X}^0 X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0)$ $\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y \partial_{\mu}\bar{Y}X^{+}$) + $igc_{w}Z_{\mu}^{0}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-})$ + $igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-})$ $\partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c^{2}}\bar{X}^{0}X^{0}H] +$ $\frac{1-2c_{\pi}^{2}}{2c_{\pi}}igM[\bar{X}^{+}X^{0}\phi^{+} - \bar{X}^{-}X^{0}\phi^{-}] + \frac{1}{2c_{\pi}}igM[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] +$ $igMs_w[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] + \frac{1}{2}igM[\bar{X}^+X^+\phi^0 - \bar{X}^-X^-\phi^0]$

Lagrangian standard model Courteay of T.D. Gutlemat

The making of the SM

- Brief History of Particle Physics (Efforts from theorists and experimentalists) 1970's

- Rise of the Standard Model theory (Electroweak and QCD)
- Discovery of J/Ψ (charm quark) in 1974 , November Revolution!
- Discovery of au lepton, bottom quark, gluon 1980's
- Discovery of weak W^{\pm} and Z^{0} bosons 1990's
- Discovery of top quark
- $N_{\nu} = 3$, great success of the Standard Model (gauge theory)
- Discovery of neutrino oscillation the 21 st century
- Discovery of CP violation in B decays, success of KM theory
- Discovery of the Higgs particle in 2012
- Find the TeV scale new physics. \Rightarrow New Revolution ?



How to build a gauge theory

U(1) case: QED & Maxwell Equations are invariant under local/gauge transformations 0 $\Psi(x) \to e^{-i\alpha(x)}\Psi(x), \ eA_{\mu}(x) \to eA_{\mu}(x) + \partial_{\mu}\alpha(x).$ Construct the covariant derivative: $D_{\mu}\Psi = (\partial_{\mu} + ieA_{\mu})\Psi$, so that $D_{\mu}\Psi
ightarrow e^{-ilpha(x)}D_{\mu}\Psi$. The gauge invariant Lagrangian density is $\mathscr{L} = -\frac{1}{\Lambda} F_{\mu\nu} F^{\mu\nu} + \overline{\Psi} (i D - m) \Psi, \quad F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}.$ SU(2) case: Yang-Mills theory (1954')
 a theory of nucleons & pions with local isospin symmetry $\mathscr{L} = -\frac{1}{4}F^{i}_{\mu\nu}F^{i\mu\nu}$ $F^{i}_{\mu\nu} \equiv \partial_{\mu}A^{i}_{\nu} - \partial_{\nu}A^{i}_{\mu} + g\epsilon^{ijk}A^{j}_{\mu}A^{k}_{\nu},$ $+\bar{\Psi}(i D - m_N)\Psi$ with $D_{\mu}\Psi \equiv (\partial_{\mu} - igA_{\mu})\Psi$, $+\frac{1}{\Lambda} \operatorname{tr}[D_{\mu}\pi D^{\mu}\pi - m_{\pi}^{2}\pi^{2}]$ $D_{\mu}\pi = \partial_{\mu}\pi(x) - g[A_{\mu}(x), \pi(x)].$ $+ig_{\pi N}\overline{\Psi}\gamma^5\pi\Psi$,

is invariant under transformations

$$\begin{split} F_{\mu\nu}^{i} &\equiv \partial_{\mu}A_{\nu}^{i} - \partial_{\nu}A_{\mu}^{i} + ge^{ijk}A_{\mu}^{j}A_{\nu}^{k}, \\ D_{\mu}\Psi &\equiv (\partial_{\mu} - igA_{\mu})\Psi, \\ D_{\mu}\pi &= \partial_{\mu}\pi(x) - g[A_{\mu}(x), \pi(x)] \, . \\ \left\{\Psi(x) &\equiv \begin{pmatrix}p(x)\\n(x)\end{pmatrix} \rightarrow U(x)\Psi(x), \quad U(x) \equiv e^{i\alpha^{i}(x)\frac{\sigma^{i}}{2}}, \\ \pi(x) &\equiv \pi^{i}(x)\sigma^{i} \rightarrow U(x)\pi(x)U^{\dagger}(x) \\ gA_{\mu}(x) &\equiv gA_{\mu}^{i}(x)\sigma^{i}/2 \\ & \rightarrow U(x)gA_{\mu}(x)U^{\dagger} + iU(x)\partial_{\mu}U^{\dagger}(x) \, . \end{split}$$

Some properties of gauge theories

1. A gauge boson corresponds to a gauge symmetry;

- Gauge symmetry forbidden mass terms for gauge fields! As long as the gauge symmetry is preserved, the corresponding gauge boson is massless!
 For U(1) gauge theory, the gauge boson does not have self-interactions; For non-abelian gauge theory, the gauge bosons can interact with each other. This very difference between U(1) gauge theories and non-abelian gauge theories leads to the asymptotic freedom of non-abelian gauge theories which is essential for building a gauge theory of strong interaction/a grand unified theory (GUT).
- 4. The gauge symmetries can be broken either spontaneously or by quantum anomalies if we introduce the chiral fermionic multiplets inconsistently. Some gauge symmetries of SM are spontaneously broken, and corresponding gauge bosons become massive. However, SM is free of various quantum anomalies due to the chiral fermions.

Spontaneous symmetry breaking

- SSB: In a quantum mechanical system, a symmetry of the action is not a symmetry of the ground state (in other words, the ground states are degenerate), then the symmetry is broken spontaneously.
- Goldstone Theorem: Every spontaneously broken global continuous symmetry corresponds to a massless scalar (Nambu-Goldstone boson) in the theory. (1960')
 First 2 rigorous proofs given by Goldstone, Salam and Weinberg (1962')

Eg. Expanding the scalar potential $V(\phi)$ around the minimum (vacuum) ϕ_0 ,

$$V(\phi) = V(\phi_0) + \frac{1}{2}(\phi - \phi_0)^a(\phi - \phi_0)^b m_{ab}^2 + \dots$$
 with $m_{ab}^2 \equiv 0$

 $\equiv \left(\frac{\partial^2 V}{\partial \phi^a \partial \phi^b} \right) \qquad \text{being}$

the mass square matrix. $V(\phi)$ is invariant under linear transformation $\phi^a \rightarrow \phi^a + \alpha \Delta^a(\phi)$, therefore $\Delta^a(\phi) \frac{\partial V}{\partial \phi^a} = 0$. Differentiate it again, we get $0 = \left(\frac{\partial \Delta^a}{\partial \phi^b}\right)_{\phi_0} \left(\frac{\partial V}{\partial \phi^a}\right)_{\phi_0} + \Delta^a \left(\phi_0\right) \left(\frac{\partial^2 V}{\partial \phi^a \partial \phi^b}\right)_{\phi_0} = \Delta^a \left(\phi_0\right) \left(\frac{\partial^2 V}{\partial \phi^a \partial \phi^b}\right)_{\phi_0}$. when $\Delta^a \left(\phi_0\right) \neq 0$ (which means vacuum is not invariant under the symmetry transformation of the potential), m^2 has an eigenvalue 0, which implies a massless scalar boson (Goldstone) in the theory.

(Anderson)-(Brout-Englert)-Higgs-(Gualinik-Hagen-Kibble)-('t Hooft) mechanism

Every spontaneously broken local continuous symmetry (gauge symmetry) corresponds to a massive gauge boson in the theory. (1962') Eg. The scalar bosons in previous slide couple to gauge bosons through the minimal coupling, i.e. through the covariant derivatives

 $\frac{1}{2} \left(D_{\mu} \phi^{i} \right)^{2} = \frac{1}{2} \left(\partial_{\mu} \phi^{i} \right)^{2} + g A_{\mu}^{a} \left(\partial_{\mu} \phi^{i} T_{ij}^{a} \phi^{j} \right) + \frac{1}{2} g^{2} A_{\mu}^{a} A_{\mu}^{b} \left(T^{a} \phi \right)^{i} \left(T^{b} \phi \right)^{i}$ The gauge symmetries are spontaneously broken by the vacuum of the scalar fields $\left\langle \phi^{i} \right\rangle_{\text{VAC}} = \left(\phi_{0} \right)^{i}, \text{ if } T^{a} \phi_{0} \neq 0. \text{ There appears the mass term for the gauge bosons}$ $\Delta \mathscr{L} = \frac{1}{2} m_{ab}^{2} A_{\mu}^{a} A^{b,\mu}, \quad m_{ab}^{2} = g^{2} \left(T^{a} \phi_{0} \right)^{i} \left(T^{b} \phi_{0} \right)^{i} .$

Remarks:

1. The gauge bosons corresponding to unbroken symmetries ($T^a \phi_0 \neq 0$) remain massless!

2. The SSB gauge symmetries are not really broken, rather hidden!

3. The massless Goldstones become the longitudinally component of the massive gauge bosons! Degree of freedom does not change!

1 massless scalar+2 massless spin-1 D.O.F. = 0 scalar+3 massive spin-1 D.O.F.

(First raised by GHK in 1964')

Chiral fermions

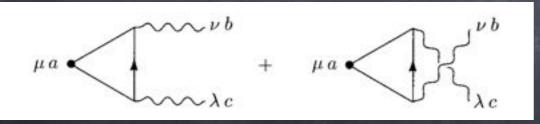
4-component spinor in Weyl representation:

$$\Psi = \begin{pmatrix} \Psi_L \\ \Psi_R \end{pmatrix}, \quad \Psi_L \equiv \frac{1 - \gamma^5}{2} \Psi = \begin{pmatrix} \Psi_L \\ 0 \end{pmatrix}, \quad \Psi_R \equiv \frac{1 + \gamma^5}{2} \Psi = \begin{pmatrix} 0 \\ \Psi_R \end{pmatrix}$$

Source Lorentz transformations:

$$\begin{split} \psi_L &\to \left(1 - i\alpha^i \frac{\sigma^i}{2} - \beta^i \frac{\sigma^i}{2}\right) \psi_L, \ \psi_R \to \left(1 - i\alpha^i \frac{\sigma^i}{2} + \beta^i \frac{\sigma^i}{2}\right) \psi_L \\ c\psi_R^* &\to \left(1 - i\alpha^i \frac{\sigma^i}{2} - \beta^i \frac{\sigma^i}{2}\right) c\psi_R^*, \ c = -i\sigma^2 = \begin{pmatrix}0 & -1\\1 & 0\end{pmatrix}. \end{split}$$

- Mass terms:
 - Dirac mass-couplings between left-handed and right-handed 2-component spinors $-m_D \left(\overline{\Psi}_L \Psi_R + \overline{\Psi}_R \Psi_L\right)$
 - Majorana mass couplings between 2-component spinors with same chirality $-m_M^L \Psi_L^T C \Psi_L m_M^R \Psi_R^T C \Psi_R + h.c.$


Chiral anomaly

 Adler-Bell-Jakiw anomaly: The Noether current corresponding to a global chiral symmetry of a classical theory of chiral fermions is not conserved any more quantum mechanically, when chiral fermions couple to gauge bosons.

ABJ anomaly equation: $\partial_{\mu}\bar{\psi}\gamma^{\mu}\gamma_{5}\psi = \frac{g^{2}}{16\pi^{2}}\epsilon^{\mu\nu\rho\sigma}F_{\mu\nu}F_{\rho\sigma}$

However, this is normal and useful. It leads to $\pi^0 \rightarrow \gamma \gamma$ and possible baryon number non-conservation of the SM.

 Gauge anomaly: If the chiral Noether current is coupled to a gauge boson, the corresponding gauge symmetry may be broken quantum mechanically!

$$\propto \operatorname{tr}[T^a\{T^b, T^c\}] = \sum_r \operatorname{tr}[T^a_r\{T^b_r, T^c_r\}]$$

• Gravity anomaly: If the chiral fermions couple to gravity, there will be new anomaly $\partial_{\mu} (\bar{\chi} T \gamma^{\mu} \chi) \approx \text{Tr}[T] \epsilon^{\mu\nu\rho\sigma} R_{\mu\nu\kappa\lambda} R^{\kappa\lambda}_{\rho\sigma}$ which breaks the corresponding gauge symmetry as well!

Gauge anomaly cancelation

- All anomalies which break the gauge symmetries should be cancelled! The gauge groups or/and representations of chiral fermions should be chosen wisely!
- Gauge anomaly cancellation : $\sum D_r^{abc} = 0$, $\sum \operatorname{tr} T_r = 0$.
- For (pseudo)-real representation: $D_r^{abc} = 0$ automatically!
- Group theory:
 - Compact semi-simple groups with only pseudo-real or real reprs (self-conjugate reprs): SU(2), SO(2n+1), SO(4n) (n≥2), USp(2n), G₂, F₄, E₇, E₈;
 - Compact semi-simple groups with non-self-conjugate reprs but $D_r^{abc} \equiv 0$: SO(4n+2) (n≥2), E₆;
 - ONLY SU(n) ($n \ge 3$) and U(1) gauge theories can have gauge anomaly!
 - Global anomaly (E.Witten 1982'): For SU(2) chiral gauge theory, the number of pseudo-real reprs of chiral fermions must be even to avoid anomaly.

Fields in SM

- Representations: $(SU(3) : R_3, SU(2) : R_2)_{Hypercharge:Y}$
- Quarks: $Q_L^i = \begin{pmatrix} u^i \\ d^i \end{pmatrix}_I = (3,2)_{+\frac{1}{6}}, \ u_R^i = (3,1)_{+\frac{1}{6}}, \ d_R^i = (3,1)_{-\frac{1}{3}};$
- Leptons: $E_L^i = \begin{pmatrix} \nu^i \\ e^i \end{pmatrix} = (1,2)_{-1/2}, \ e_R^i = (1,2)_{-1}$;

Note: No right-handed neutrinos ν_R^i ! • Gauge potential: G_μ^A (A = 1, 2, ..., 8), W_μ^a (a = 1, 2, 3), B_μ ;3 gauge couplings: g_s , g, g';

• Higgs filed: $H = \begin{pmatrix} H^+ \\ H^0 \end{pmatrix} = (1,2)_{+1/2}$;

• Covariant derivatives: $D_{\mu} = \partial_{\mu} - ig_s G^A_{\mu} T^A_3 - ig W^a_{\mu} T^a_2 - ig' Y B_{\mu}$

Covariant derivatives

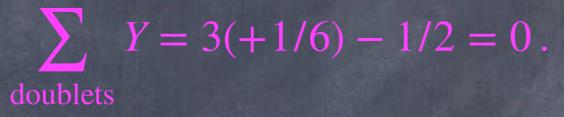
3 Pauli matrices: $\sigma^{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma^{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma^{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $\begin{bmatrix} \frac{\sigma^{a}}{2}, \frac{\sigma^{b}}{2} \end{bmatrix} = i\epsilon^{abc}\frac{\sigma^{c}}{2}$, a, b, c = 1, 2, 3.

SM Lagrangian

$$\begin{aligned} \mathscr{L}_{\rm SM} &= \mathscr{L}_{\rm gauge} + \mathscr{L}_{\rm quark} + \mathscr{L}_{\rm leptons} + \mathscr{L}_{\rm Higgs} + \mathscr{L}_{\rm Yukawa} \\ \mathscr{L}_{\rm gauge} &= -\frac{1}{4} G^{A}_{\mu\nu} G^{A\mu\nu} - \frac{1}{4} W^{a}_{\mu\nu} W^{a\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} , \\ \mathscr{L}_{\rm quark} &= \bar{Q}^{i}_{L} i \ \mathcal{D} Q^{i}_{L} + \bar{u}^{i}_{R} i \ \mathcal{D} u^{i}_{R} + \bar{d}^{i}_{R} i \ \mathcal{D} d^{i}_{R} , \\ \mathscr{L}_{\rm lepton} &= \bar{E}^{i}_{L} i \ \mathcal{D} E^{i}_{L} + \bar{e}^{i}_{R} i \ \mathcal{D} e^{i}_{R} , \\ \mathscr{L}_{\rm Higgs} &= (D_{\mu}H)^{\dagger} D^{\mu}H - V(H, H^{\dagger}) , \\ \mathscr{L}_{\rm Yukawa} &= Y^{ij}_{u} \bar{Q}^{i}_{L} u^{j}_{R} \widetilde{H} + Y^{ij}_{d} \bar{Q}^{i}_{L} d^{j}_{R} H + Y^{ij}_{e} E^{i}_{L} e^{j}_{R} H + \mathrm{h.c.} , \\ V(H, H^{\dagger}) &= -\mu^{2} H^{\dagger} H + \frac{\lambda}{4} \left(H^{\dagger} H\right)^{2} &= \frac{\lambda}{4} \left(H^{\dagger} H - \frac{\nu^{2}}{2}\right) + ... \end{aligned}$$

Remarks:

- 1. No mass terms for fermions & gauge bosons!
- 2. Most of parameters are from Higgs-sector and Yukawa couplings!


Gauge anomaly cancellation in SM

- Convert the right-handed chiral fermions to left-handed ones $u_R^{i,c} = Cu_R^* = (\bar{3},1)_{-2/3}, \ d_R^{i,c} = Cd_R^* = (\bar{3},1)_{+1/3}, \ e_R^{i,c} = Ce_R^* = (1,1)_{+1},$
- SU(3)-SU(3)-SU(3): Repr. of SU(3) sector $3 \oplus 3 \oplus \overline{3} \oplus \overline{3} \oplus 1 \oplus 1$ is real, $D^{ABC} \equiv 0$;
- SU(3)-SU(3)-SU(2): $D^{ABc} \propto \operatorname{tr}(\sigma^c/2) = 0;$
- SU(3)-SU(2)-SU(2): $D^{Abc} \propto \operatorname{tr}(\lambda^A/2) = 0;$
- SU(2)-SU(2)-SU(2): $D^{abc} \equiv 0;$
- SU(2) global anomaly cancellation: 4 SU(2) doublets (3 quark doublets and 1 lepton doublet) in each generation in SM;
- graviton-graviton-SU(3): $tr(\lambda^A/2) = 0$;
- graviton-graviton-SU(2): $tr(\sigma^c/2) = 0$;

Gauge anomaly cancellation: U(1) sector \$U(3)-SU(3)-U(1):

 $\sum_{\text{quarks}} Y = 2(+1/6) - 2/3 + 1/3 = 0.$

SU(2)−SU(2)−U(1):

• U(1)-U(1)-U(1): $\sum Y^3 = 6(+1/6)^3 + 3(-2/3)^3 + 3(1/3)^3 + 2(-1/2)^3 + 1^3 = 0.$

graviton-graviton-U(1):

 $\sum Y = 6(+1/6) + 3(-2/3) + 3(+1/3) + 2(-1/2) + 1 = 0$

SSB in SM

Minimizing the potential $V(H, H^{\dagger})$, $\langle H^{\dagger}H \rangle_{\text{vac}} = v^2/2$. The vacuum expectation value (VEV) of the Higgs field (due to the freedom given by gauge invariance or in so-called unitary gauge)

$$\langle H \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}$$
 with $v \simeq 246 \text{GeV}.$

We see that $T^a \langle H \rangle \neq 0$, $(T^a = \sigma^a/2)$, $Y \langle H \rangle \equiv \frac{1}{2} \langle H \rangle \neq 0$, but $(T^3 + Y) \langle H \rangle = 0$. This means that the gauge symmetry $SU_L(2) \otimes U_Y(1)$ is spontaneously broken into $U_O(1)$ where

 $Q \equiv T^3 + Y$ (Gell-Mann-Nishijima)

is exactly the electric charge in unit of an elementary charge. We have $\begin{cases} Q_u = +1/2 + 1/6 = 0 + 2/3 = +2/3, \\ Q_d = -1/2 + 1/6 = 0 - 1/3 = -1/3, \\ Q_e = -1/2 - 1/2 = 0 - 1 = -1, \\ Q_\nu = +1/2 - 1/2 = 0 - 0 = 0. \end{cases}$

Remark: If we introduce right-handed neutrino which must be SU(2) singlet, it will have 0 hyper-charge too. Therefore, the right-handed neutrino must be SM singlet.

Gauge bosons after SSB in SM Introduce: $W^{\pm}_{\mu} = \frac{1}{\sqrt{2}} \left(W^1_{\mu} \mp i W^2_{\mu} \right), \quad T^{\pm} = T^1 \pm i T^2$, and $\begin{pmatrix} Z_{\mu} \\ A_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta_{W} & -\sin \theta_{W} \\ \sin \theta_{W} & \cos \theta_{W} \end{pmatrix} \begin{pmatrix} W_{\mu}^{3} \\ B_{\mu} \end{pmatrix}, \text{ with } \sin \theta_{W} = g' / \sqrt{g^{2} + g'^{2}}$ where $heta_W$ is the Weinberg angle, the covariant derivative becomes $D_{\mu} = \partial_{\mu} - igW_{\mu}^{a}T^{a} - ig'YB_{\mu}$ $= \partial_{\mu} - i \frac{g}{\sqrt{2}} \left(W^{+} T^{+} + W^{-} T^{-} \right) - ig \cos \theta_{W} \left(T^{3} - \tan^{2} \theta_{W} Y \right) Z_{\mu} - ie Q A_{\mu},$ where $e = g \sin \theta_W$, and $Q = T^3 + Y$. In the unitary gauge, we parameterize $H(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v+h(x) \end{pmatrix}.$ $\left(D_{\mu}H\right)^{\dagger}(D^{\mu}H) = \frac{1}{2}\partial_{\mu}h(x)\partial^{\mu}h(x) + \frac{g^{2}}{4}(v+h(x))^{2}\left(W_{\mu}^{+}W^{-\mu} + \frac{1}{2\cos^{2}\theta_{W}}Z_{\mu}Z^{\mu}\right).$ Hence the masses for gauge bosons are $M_W^2 = \frac{g^2 v^2}{4}, \quad M_Z^2 = \frac{(g^2 + g^2) v^2}{4}, \quad M_A^2 = 0.$

Fermions after SSB in SM Mass terms: $\mathscr{L}_{\text{Yukawa}} = \bar{Q}_L y_d d_R H + \bar{Q}_L y_u u_R \widetilde{H} + \bar{E}_L y_e \ell_R H + \text{ h.c.}$ $= \left(\bar{d}_L y_d d_R + \bar{u}_L y_u u_R + \bar{\ell}_L y_e \ell_R \right) \frac{v + h(x)}{\sqrt{2}} + \text{ h.c.}$

Diagonalizing the Yukawa couplings, we can get the Dirac mass terms of fermions

$$\mathscr{L}_{\text{mass}} = -\sum_{f} m_f \bar{f} f$$
, with $m_f = -y_f v / \sqrt{2}$

Couplings between fermions and gauge bosons:

$$\mathscr{L}_{\text{current}} = g\left(W_{\mu}^{+}J_{W}^{+\mu} + W_{\mu}^{-}J_{W}^{-\mu} + Z_{\mu}J_{Z}^{\mu}\right) + eA_{\mu}J_{\text{em}}^{\mu}$$

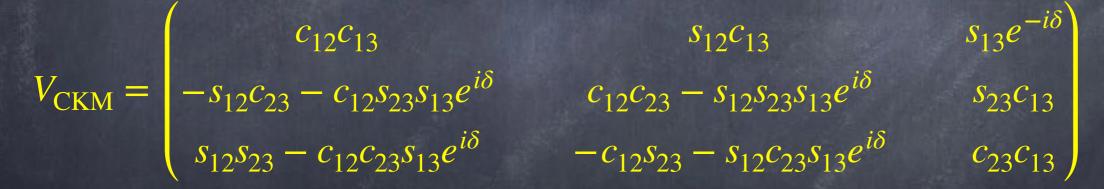
• Charge current:

$$J_W^{+\mu} = \frac{1}{\sqrt{2}} \left(\bar{\nu}_L \gamma^\mu V_{\text{CKM}} \ell_L + \bar{u}_L \gamma^\mu d_L \right), \quad J_W^{-\mu} = \frac{1}{\sqrt{2}} \left(\bar{\ell}_L \gamma^\mu \nu_L + \bar{d}_L \gamma^\mu V_{\text{CKM}}^{\dagger} u_L \right),$$

• Neutral current:

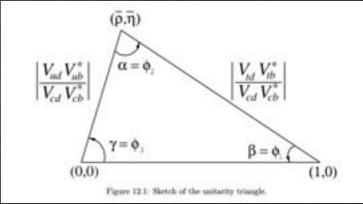
$$J_Z^{\mu} = \frac{1}{\cos \theta_W} \sum_{f=Q_L, u_R, d_R, E_L, \ell_R} \bar{f} \gamma^{\mu} \left(T^3 - Q \sin^2 \theta_W \right) f$$

• Electro-magnetic current: $J_{\rm em}^{\mu} = -\bar{\ell}\gamma^{\mu}\ell + \frac{2}{3}\bar{u}\gamma^{\mu}u - \frac{1}{3}\bar{d}\gamma^{\mu}d$


CKM matrix: source of CP violation in SM

Charged current interaction:

CKM matrix describes the mixing among the down-type quarks


$$\frac{g}{\sqrt{2}} \left(\overline{u_L}, \overline{c_L}, \overline{t_L}\right) \gamma^{\mu} W^+_{\mu} V_{\text{CKM}} \begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix} + \text{ h.c., } V_{\text{CKM}} \equiv V_L^{\mu} V_L^{d\dagger} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

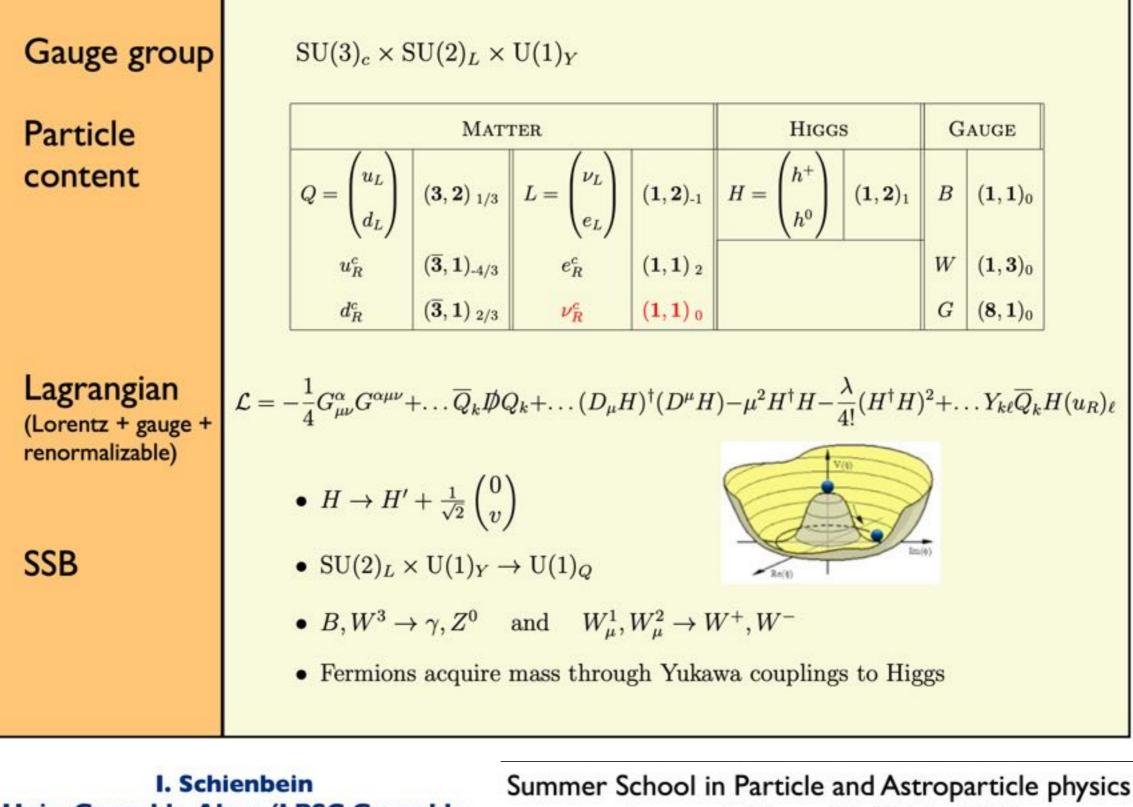
Solve the set of th

The unitarity of CKM matrix can be represented as a unitary triangle in complex plane.

More information from lectures by Prof. C.D. Lü in this school

Quantized SM Lagrangian: SM=QCD+EW

- QCD: strong interactions among quarks and gluons (C.F. Qiao's lect.)
- gauge interactions among 2. W, Z, Higgs bosons charge-current and 3. neutral-current interactions among W/Z and fermions Yukawa couplings among 4. fermions and Higgs bosons ghosts due to the 5. Faddeev-Popov quantization


 $-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{adc}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{c}_{\nu} +$ $\frac{1}{2}ig_s^2(\tilde{q}_i^a\gamma^\mu q_j^a)g_\mu^a + \tilde{G}^a\partial^2 G^a + g_sf^{abc}\partial_\mu \tilde{G}^a G^b g_\mu^c - \partial_\nu W_\mu^+ \partial_\nu W_\mu^- \boxed{M^2 W^+_\mu W^-_\mu - \frac{1}{2} \partial_\nu Z^0_\mu \partial_\nu Z^0_\mu - \frac{1}{2\epsilon_-^2} M^2 Z^0_\mu Z^0_\mu - \frac{1}{2} \partial_\mu A_\nu \partial_\mu A_\nu - \frac{1}{2} \partial_\mu H \partial_\mu H}$ $\frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c!}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{a^{2}} + \frac{1}{2c!}M\phi^{0}\phi^{0} - \frac{1}{2c!}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{a^{2}} + \frac{1}{2c!}M\phi^{0}\phi^{0} - \frac{1}{2c!}M\phi^{$ $\frac{2M}{g}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu (W^+_\mu W^-_\nu)]$ $W^+_{\nu}W^-_{\mu}) - Z^0_{\nu}(W^+_{\mu}\partial_{\nu}W^-_{\mu} - W^-_{\mu}\partial_{\nu}W^+_{\mu}) + Z^0_{\mu}(W^+_{\nu}\partial_{\nu}W^-_{\mu} - W^-_{\nu}\partial_{\nu}W^+_{\mu})] - igs_w[\partial_{\nu}A_{\mu}(W^+_{\mu}W^-_{\nu} - W^+_{\nu}W^-_{\mu}) - A_{\nu}(W^+_{\mu}\partial_{\nu}W^-_{\mu} - W^-_{\mu})]$ $W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} +$ $\frac{1}{2}g^2W^+_\mu W^-_\nu W^+_\mu W^-_\nu + g^2c^2_w(Z^0_\mu W^+_\mu Z^0_\nu W^-_\nu - Z^0_\mu Z^0_\mu W^+_\nu W^-_\nu) +$ $g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} W^{+}_{\nu}W^{-}_{\mu}) - 2A_{\mu}Z^{0}_{\mu}W^{+}_{\nu}W^{-}_{\nu}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] \frac{1}{8}g^{2}\alpha_{h}[H^{4}+(\phi^{0})^{4}+4(\phi^{+}\phi^{-})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}]$ $gMW^+_{\mu}W^-_{\mu}H - \frac{1}{2}g\frac{M}{c^2}Z^0_{\mu}Z^0_{\mu}H - \frac{1}{2}ig[W^+_{\mu}(\phi^0\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^0) W^{-}_{\mu}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}H) - W^{-}_{\mu}(H\partial_{\mu}\phi^{+} - \phi^{-}\partial_{\mu}H)] + \frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}H) - W^{-}_{\mu}(H\partial_{\mu}\phi^{+} - \phi^{-}\partial_{\mu}H)]$ $\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{\nu}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\frac{s_{\mu}^{2}}{c_{\nu}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) +$ $igs_w MA_{\mu}(W_{\mu}^+\phi^- - W_{\mu}^-\phi^+) - ig \frac{1-2c_{\mu}^2}{2c_{\mu}}Z_{\mu}^0(\phi^+\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^+) +$ $igs_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - \frac{1}{4}g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] \frac{1}{4}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu [H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2 \phi^+ \phi^-] - \frac{1}{2}g^2 \frac{s_w^2}{c_\nu} Z^0_\mu \phi^0 (W^+_\mu \phi^- +$ $W^{-}_{\mu}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{\mu}^{2}}{c_{\nu}}Z^{0}_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W^{+}_{\mu}\phi^{-} +$ $W^{-}_{\mu}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) - g^{2}\frac{\delta w}{c_{w}}(2c_{w}^{2} - 1)Z^{0}_{\mu}A_{\mu}\phi^{+}\phi^{-} - W^{-}_{\mu}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}\phi^{+}\phi^{-} - W^{-}_{\mu}\phi^{+}) - g^{2}\frac{\delta w}{c_{w}}(2c_{w}^{2} - 1)Z^{0}_{\mu}A_{\mu}\phi^{+}\phi^{-} - W^{-}_{\mu}\phi^{+}) - g^{2}\frac{\delta w}{c_{w}}(2c_{w}^{2} - 1)Z^{0}_{\mu}A_{\mu}\phi^{+}\phi^{-}) - g^{2}\frac{\delta w}{c_{w}}(2c_{w}^{2} - 1)Z^{0}_{\mu}A_{\mu}\phi^{+}\phi^{-} - W^{-}_{\mu}\phi^{+}) - g^{2}\frac{\delta w}{c_{w}}(2c_{w}^{2} - 1)Z^{0}_{\mu}A_{\mu}\phi^{+}\phi^{-}) - g^{2}\frac{\delta w}{c_{w}}(2c_{w}^{2} - 1)Z^{0}_{\mu}A_{\mu}\phi^{-}) - g^{2}\frac{$ $g^1 s_w^2 A_\mu A_\mu \phi^+ \phi^- - \bar{e}^{\lambda} (\gamma \partial + m_e^{\lambda}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda} - \bar{u}_i^{\lambda} (\gamma \partial + m_e^{\lambda}) u_i^{\lambda} -$ 3 $d_j^{\lambda}(\gamma \partial + m_d^{\lambda})d_j^{\lambda} + igs_w A_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_j^{\lambda}\gamma^{\mu}u_j^{\lambda}) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma^{\mu}d_j^{\lambda})] +$ $\frac{dg}{dv}Z^{0}_{\mu}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s^{2}_{w}-1-\gamma^{5})e^{\lambda}) + (\bar{u}^{\lambda}_{I}\gamma^{\mu}(\frac{4}{3}s^{2}_{w}-1))$ $(1 - \gamma^5)u_j^{\lambda}) + (d_j^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_w^2 - \gamma^5)d_j^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^+[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda}) + (d_j^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda})] + (d_j^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda}) + (d_j^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda})] + (d_j^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda}) +$ $(\bar{u}_j^\lambda\gamma^\mu(1+\gamma^5)C_{\lambda\kappa}d_j^\kappa)] + \frac{ig}{2\sqrt{2}}W^-_\mu[(\bar{e}^\lambda\gamma^\mu(1+\gamma^5)\nu^\lambda) + (\bar{d}_j^\kappa C^\dagger_{\lambda\kappa}\gamma^\mu(1+\gamma^5)\nu^\lambda)] + (\bar{d}_j^\kappa C^\dagger_{\lambda\kappa}\gamma^\mu(1+\gamma^5)\nu^\lambda) + (\bar{d}_$ $\gamma^{5}(u_{1}^{\lambda})] + \frac{ig}{2\sqrt{2}} \frac{m_{0}^{5}}{M} [-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})] \frac{g}{2}\frac{m_{\lambda}^{\kappa}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + i\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})] + \frac{ig}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) +$ $m_u^\lambda(\hat{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa] + \frac{ig}{2M\sqrt{2}}\phi^-[m_d^\lambda(\hat{d}_j^\lambda C_{\lambda\kappa}^\dagger(1+\gamma^5)u_j^\kappa) - m_u^\kappa(\hat{d}_j^\lambda C_{\lambda\kappa}^\dagger(1+\gamma^5)u_j^\kappa)]$ $\gamma^{5}(u_{j}^{\kappa}] = \frac{g}{2} \frac{m_{\lambda}^{\lambda}}{M} H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda}) - \frac{g}{2} \frac{m_{\lambda}^{\lambda}}{M} H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda}) + \frac{ig}{2} \frac{m_{\lambda}^{\lambda}}{M} \phi^{0}(\bar{u}_{j}^{\lambda}\gamma^{5}u_{i}^{\lambda}) \frac{ig}{2} \frac{m_d^2}{M} \phi^0(\bar{d}_j^{\lambda} \gamma^5 d_j^{\lambda}) + [\bar{X}^+(\partial^2 - M^2)X^+ + \bar{X}^-(\partial^2 - M^2)X^- + \bar{X}^0(\partial^2 - M$ $\frac{M^2}{c^2}X^0 + \bar{Y}\partial^2 Y + igc_w W^+_{\mu}(\partial_{\mu}\bar{X}^0X^- - \partial_{\mu}\bar{X}^+X^0) + igs_w W^+_{\mu}(\partial_{\mu}\bar{Y}X^- - \partial_{\mu}\bar{Y}X^0) + igs_w W^+_{\mu}(\partial_{\mu}\bar{Y}X^- - \partial_{\mu}\bar{Y}X^0) + igs_w W^+_{\mu}(\partial_{\mu}\bar{Y}X^- - \partial_{\mu}\bar{Y}X^0) + igs_w W^+_{\mu}(\partial_{\mu}\bar{Y}X^0) + igs_w W^+_{\mu}(\partial_{\mu$ $\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y \partial_{\mu}\bar{Y}X^{+}$) + $igc_{w}Z_{\mu}^{0}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-})$ + $igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-})$ $\partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c_{\mu}^{2}}\bar{X}^{0}X^{0}H] +$ $\frac{1-2c_{s}^{2}}{2c_{s}}igM[\bar{X}^{+}X^{0}\phi^{+}-\bar{X}^{-}X^{0}\phi^{-}]+\frac{1}{2c_{s}}igM[\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-}]+$ $igMs_w[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] + \frac{1}{2}igM[\bar{X}^+X^+\phi^0 - \bar{X}^-X^-\phi^0]$

Lagrangian standard model Counterly of T.D. Gutternez

Small summary of the theoretical prospects of the SM

- Renormalizable theory!
- Gauge SSB: $SU_C(3) \otimes SU_L(2) \otimes U_Y(1) \rightarrow U_{em}(1)$;
- Gauge anomaly free;
- ONLY 18 parameters:
 - 3 gauge couplings: $g_1 = g'$, $g_2 = g$ and $g_3 = g_s$;
 - 9 fermion masses: $m_u, m_d, m_s, m_c, m_b, m_t, m_e, m_\mu, m_\tau$;
 - 4 CKM matrix parameters: λ , A, ρ , η (Wolfenstein parameterization);
 - 1 Higgs vacuum expectation value (VEV): v; (related to m_W and m_Z)
 - 1 Higgs mass: m_{H} ; (related to Higgs self-coupling λ and VEV ν)
- Global symmetries:
 - P and C are maximally violated in weak interactions;
 - CP and T can be violated;
 - $U_B(1)$ and $U_L(1)$ global symmetry: SM (before and after SSB) is invariant under $q \rightarrow e^{-i\alpha/3}q$ and $\ell \rightarrow e^{-i\beta}\ell$, $\nu \rightarrow e^{-i\beta}\nu$
 - \Rightarrow Baryon number and lepton number conservation

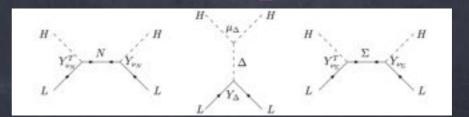
One page summary of the world

Univ. Grenoble Alpes/LPSC Grenoble

Annecy-le-Vieux, 20-26 July 2017

The SM as an effective field theory

- Weinberg's "folk theorem": If one writes down the most general possible Lagrangian, including all terms consistent with assumed symmetry principles, and then calculates matrix elements with this Lagrangian to any given order of perturbation theory, the result will simply be the most general possible S-matrix consistent with perturbative unitarity, analyticity, cluster decomposition, and the assumed symmetry properties.
 (S. Weinberg, "Phenomenological Lagrangians," Physica A, 96, 327, 1979; "Effective Field Theory, Past and Future," [arXiv:0908.1964])
 For more information, see H.H. Zhang's lectures on EFT.
- SM effective field theory (SMEFT):


Ľ

 $\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{\text{SM}} + \mathscr{L}^{(5)} + \mathscr{L}^{(6)} + \cdots, \quad \mathscr{L}^{(d)} = \sum_{i=1}^{n_d} \frac{C_i^{(d)}}{\Lambda^{d-4}} Q_i^{(d)} \quad \text{for } d > 4$

d=5 Weinberg's operator: After SSB, neutrinos obtain masses!

$$\mathscr{L}_{d=5} = \frac{c_{ij}}{\Lambda_{I}} E_{L}^{i\alpha T} C \epsilon_{\alpha\beta} H^{\beta} H^{\lambda} \epsilon_{\lambda\delta} E_{L}^{j\delta} + \text{h.c.} \Rightarrow m_{\nu ij} = -\frac{\nu}{\Lambda_{I}} c_{ij}$$

Can be obtained from tree-level see-saw

For neutrino masses and mixings related topics, see 热衣木阿吉 & Z.H. Zhao's lectures

Successes of the SM

- All known "elementary" particles are involved in the SM;
- ONLY 18 parameters;
- ALMOST ALL known high energy phenomena (except neutrino oscillations) can be described qualitatively and quantitatively;
 - Classifications of hadrons: approximate flavor symmetry in QCD, chiral symmetry breaking, exotic hadrons (predicted by QCD but yet not fully understood) ...
 - Hard scattering processes such as DIS, Drell-Yan and jets: Factorization works well thanks to the asymptotic freedom of QCD ...
 - Charge current and neutral current processes;
 - P/CP violations;
 - Neutral K/B/D meson mixing;
 - Decays and CP asymmetries of K/B/D decays;
 - FCNC processes, lepton universalities

see lectures in this summer school for details

Experimental tests of the SM

Most of tests from accelerator related experiments (collider physics)!
 For collider physics, see L.Wu's lectures

- The gauge sector: LEP, SLC, Tevatron
 Gauge couplings, gauge structures, generations, ...
- The flavor sector: B factories (CLEO/BaBar/Belle/LHCb/Belle-II) Decays&CPV ⇒Determination of CKM matrix-elements: size and phases
- The EWSB sector (Higgs related): LHC/CEPC/ILC Discovery of Higgs, gauge couplings, Yukawa couplings, selfcouplings
- The neutrino-mass sector: neutrino factories
 Oscillations/CP violation ⇒ masses and mixings

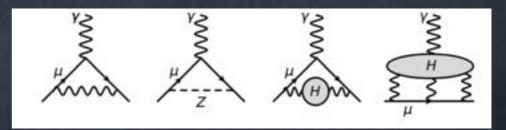
QCD plays a very essential role in most of above tests! see C.F. Qiao's lectures

The most successful example of the SM

Anomalous magnetic moment of leptons

 $\overrightarrow{\mu}_{\ell} = g_{\ell} \left(\frac{q}{2m_{\ell}} \right) \overrightarrow{s} \quad \text{where} \quad g_{\ell} = 2\left(1 + a_{\ell} \right)$

At order of α , $a_{\ell} = \frac{\alpha}{2\pi} \approx 0.0011614$


• For electron:

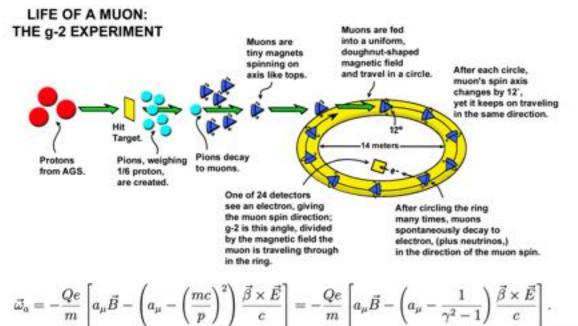
 $\begin{aligned} a_e(\text{Exp}) &= 1159652180.73(28) \times 10^{-12} \\ a_e(\text{SM} : \alpha(\text{Rb})) &= 1159652182.037(720)(11)(12) \times 10^{-12}, \\ a_e(\text{SM} : \alpha(\text{Cs})) &= 1159652181.606(229)(11)(12) \times 10^{-12}, \\ a_e(\text{Exp}) - a_e(\text{SM}) \approx 1 \times 10^{-12} \end{aligned}$

• For muon:

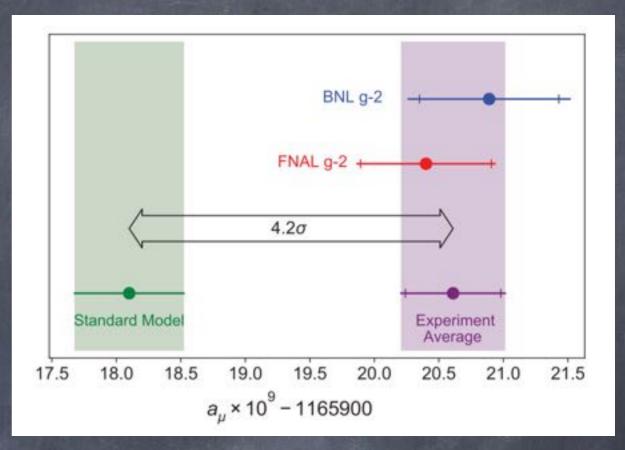
 $a_{\mu}(\text{Exp}: \text{BNL} + \text{FNAL}) = 116592061(41) \times 10^{-11}(0.35\text{ppm})$

 $a_{\mu}(SM) = 116591810(43) \times 10^{-11}(0.37 \text{ppm})$ $a_{\mu}(Exp) - a_{\mu}(SM) = (251 \pm 59) \times 10^{-11}$

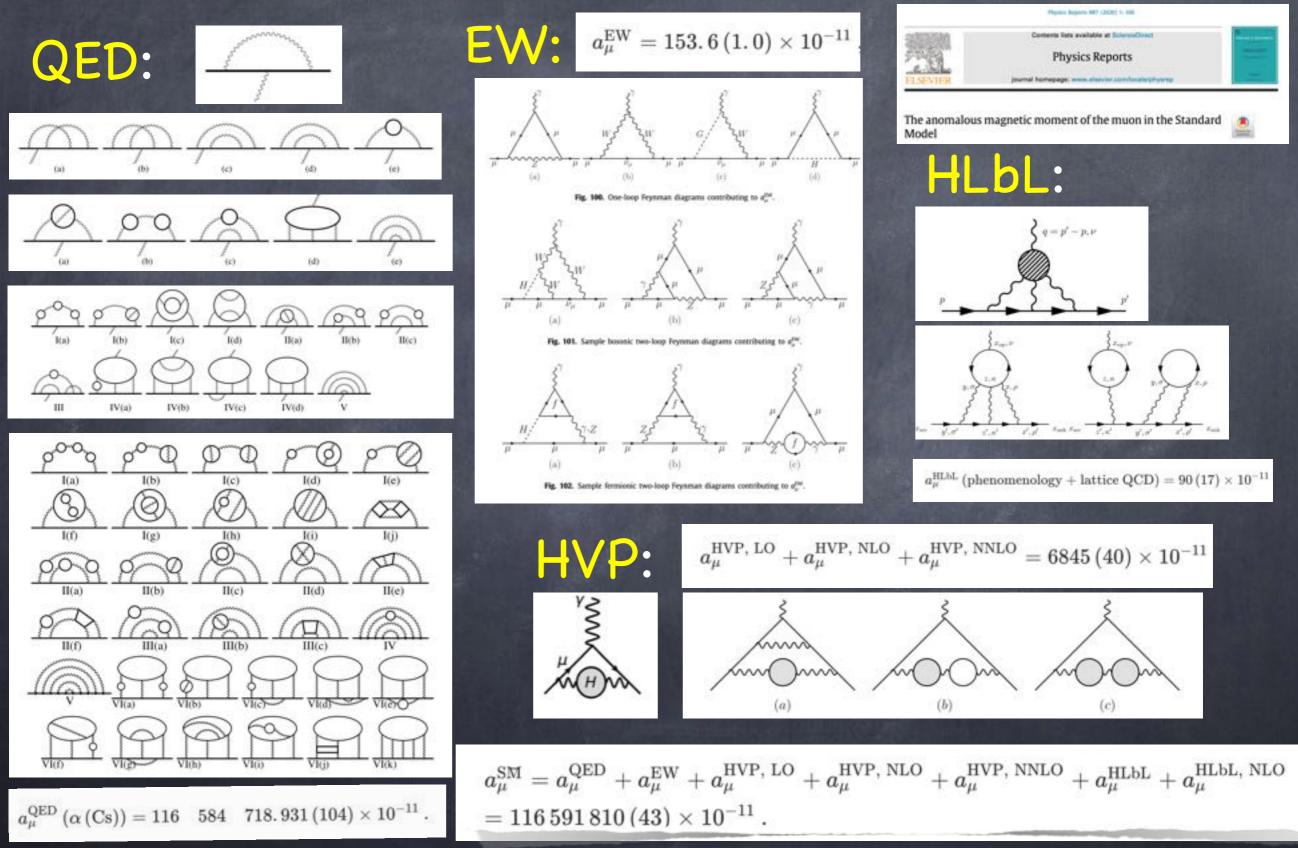


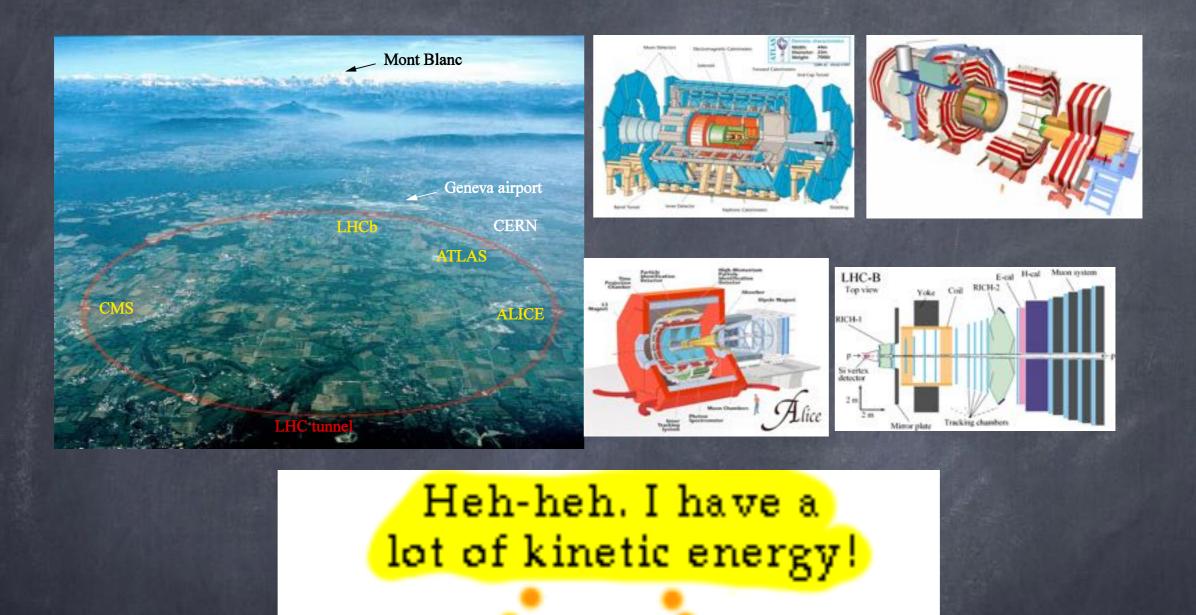


The headstone of Julian Schwinger at Mt. Auburn Cemetery in Cambridge, MA.


Efforts from experimentalists

BNL E821+FNAL muon g-2 experiments


For the "magic" momentum $p_{\text{magic}} = m/\sqrt{a} \simeq 3.09 \text{ GeV/c}$ ($\gamma_{\text{magic}} = 29.3$), the second term vanishes, and the electric field does not contribute to the spin motion *relative* to the momentum.² If g = 2, then $a_{\mu} = 0$ and the spin would follow the momentum, turning at the cyclotron frequency.


 $a_{\mu}(\text{FNAL}) = 116592040(54) \times 10^{-11}$ $a_{\mu}(\text{BNL}) = 116592089(63) \times 10^{-11}$ $a_{\mu}(\text{Exp}) = 116592061(41) \times 10^{-11}(0.35\text{ppm})$ $a_{\mu}(\text{SM}) = 116591810(43) \times 10^{-11}(0.37\text{ppm})$ $a_{\mu}(\text{Exp}) - a_{\mu}(\text{SM}) = (251 \pm 59) \times 10^{-11}$

PRL 126, 141801 (2021)

Efforts from theorists

Large Hadron Collider (LHC)

energy + energy = lots of energy

Main channels to produce Higgs@LHC

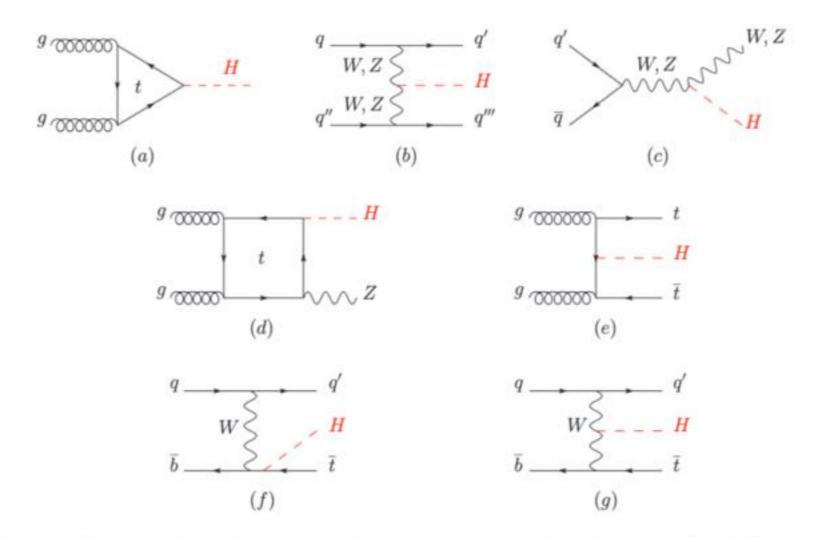
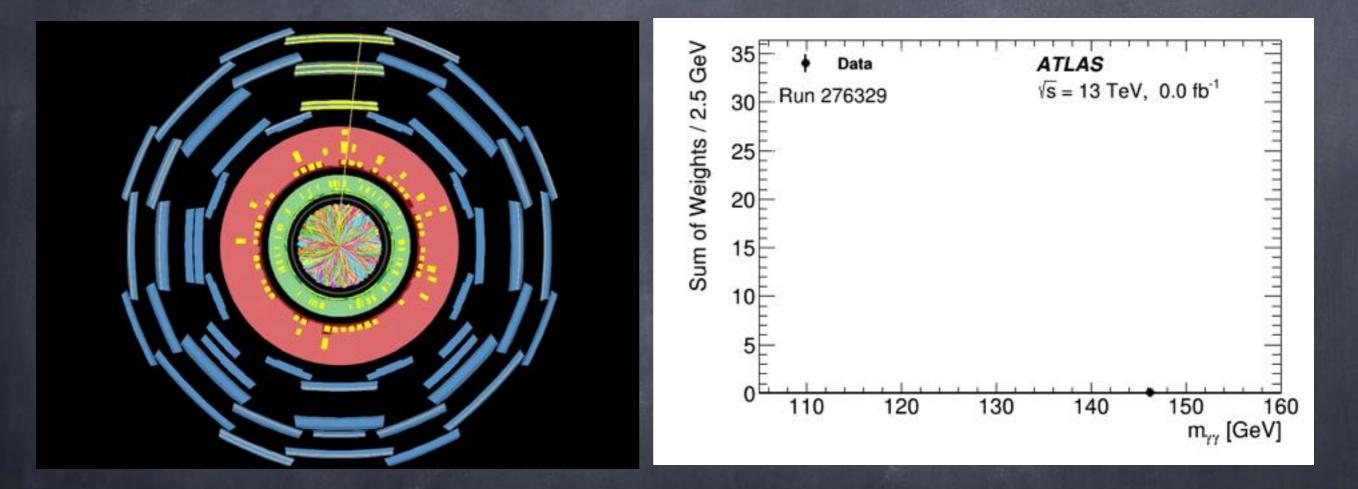
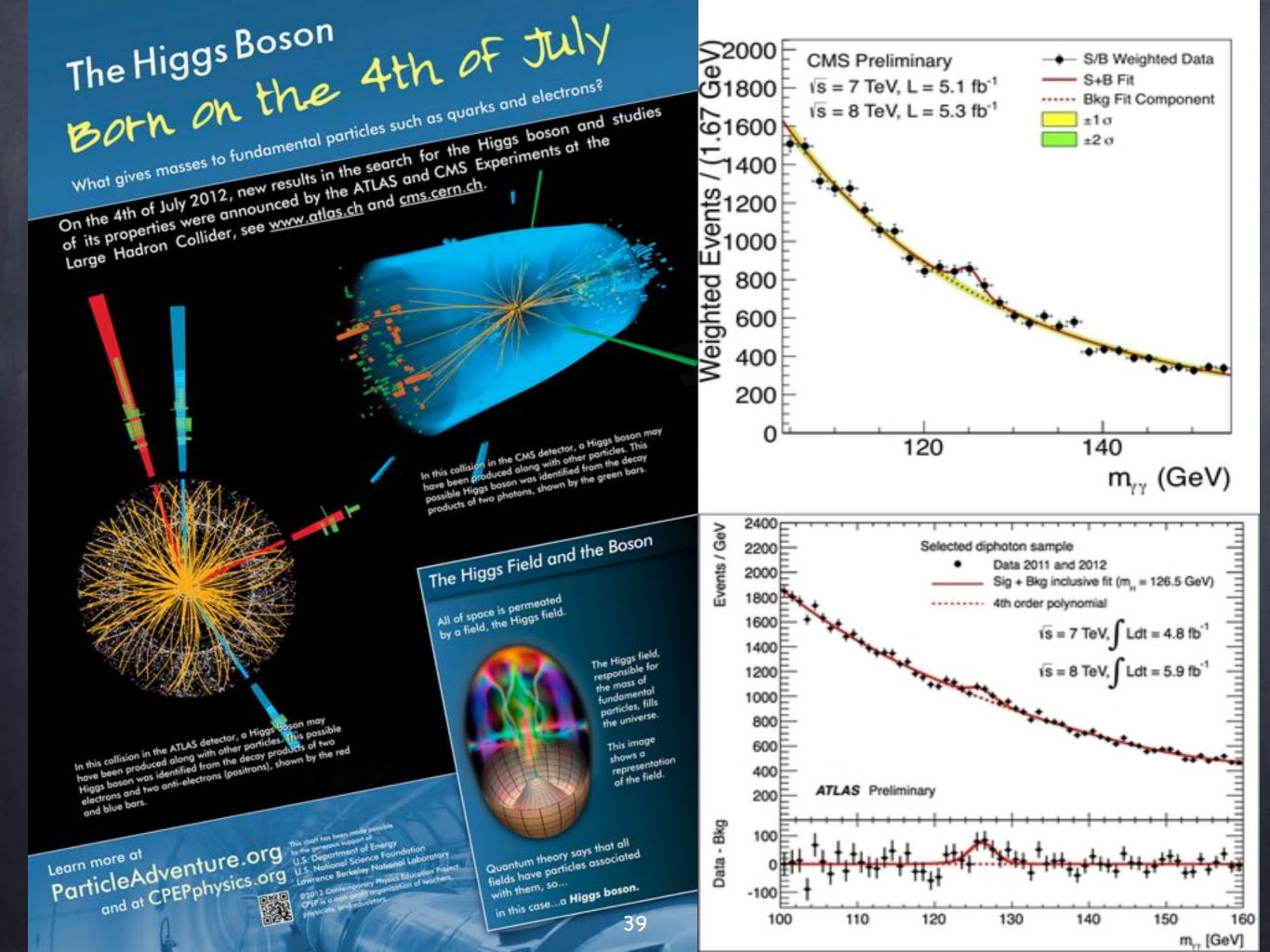




Figure 11.1: Main leading order Feynman diagrams contributing to the Higgs boson production in (a) gluon fusion, (b) Vector-boson fusion, (c) Higgs-strahlung (or associated production with a gauge boson at tree level from a quark-quark interaction), (d) associated production with a gauge boson (at loop level from a gluon-gluon interaction), (e) associated production with a pair of top quarks (there is a similar diagram for the associated production with a pair of bottom quarks), (f-g) production in association with a single top quark

Discover Higgs@LHC

Main production/decay channels of Higgs

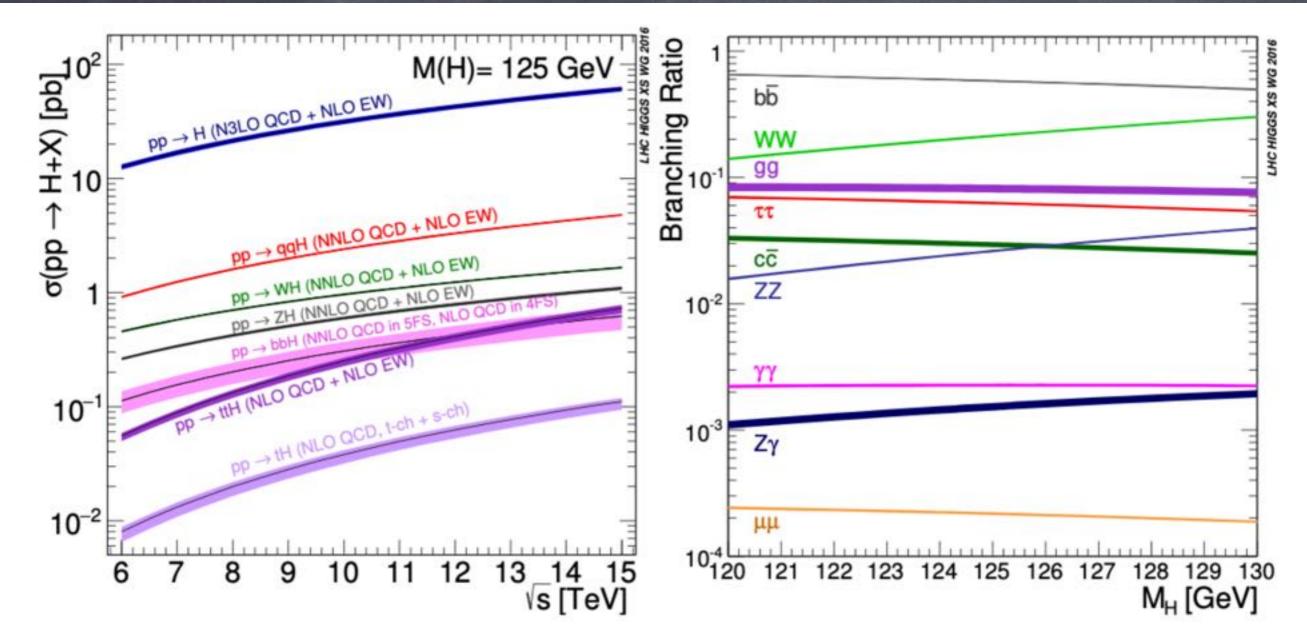


Figure 11.2: (Left) The SM Higgs boson production cross sections as a function of the center of mass energy, \sqrt{s} , for pp collisions [45]. The VBF process is indicated here as qqH. The theoretical uncertainties are indicated as bands. (Right) The branching ratios for the main decays of the SM Higgs boson near $m_H = 125 \text{ GeV}$ [43, 44]. The theoretical uncertainties are indicated as bands.

Main decay channels of Higgs

Table 11.3: The branching ratios and the relative uncertainty [43,44] for a SM Higgs boson with $m_H = 125 \text{ GeV}$.

Decay channel	Branching ratio	Rel. uncertainty
$H ightarrow \gamma \gamma$	$2.27 imes 10^{-3}$	2.1%
$H \rightarrow ZZ$	2.62×10^{-2}	$\pm 1.5\%$
$H \rightarrow W^+ W^-$	$2.14 imes 10^{-1}$	$\pm 1.5\%$
$H \to \tau^+ \tau^-$	6.27×10^{-2}	$\pm 1.6\%$
$H ightarrow b ar{b}$	$5.82 imes 10^{-1}$	$^{+1.2\%}_{-1.3\%}$
$H \to c \bar{c}$	$2.89 imes10^{-2}$	$^{+5.5\%}_{-2.0\%}$
$H o Z\gamma$	$1.53 imes 10^{-3}$	$\pm 5.8\%$
$H ightarrow \mu^+ \mu^-$	$2.18 imes 10^{-4}$	$\pm 1.7\%$

Review of the SM, PDG2020

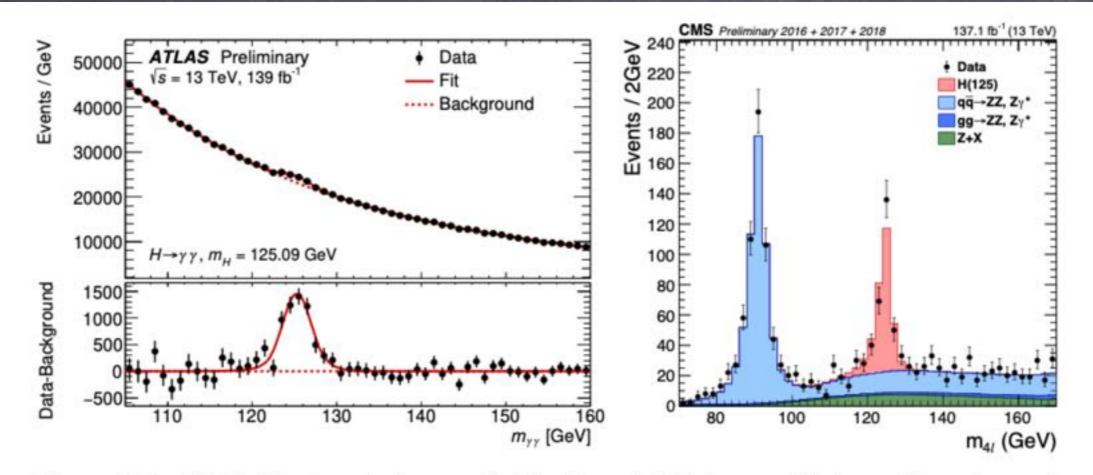


Figure 11.3: (Left) The invariant mass distribution of diphoton candidates, with each event weighted by the ratio of signal-to-background in each event category, observed by ATLAS [125] at Run 2. The residuals of the data with respect to the fitted background are displayed in the lower panel. (Right) The $m_{4\ell}$ distribution from CMS [126] Run 2 data.

Status of Higgs mass measurements

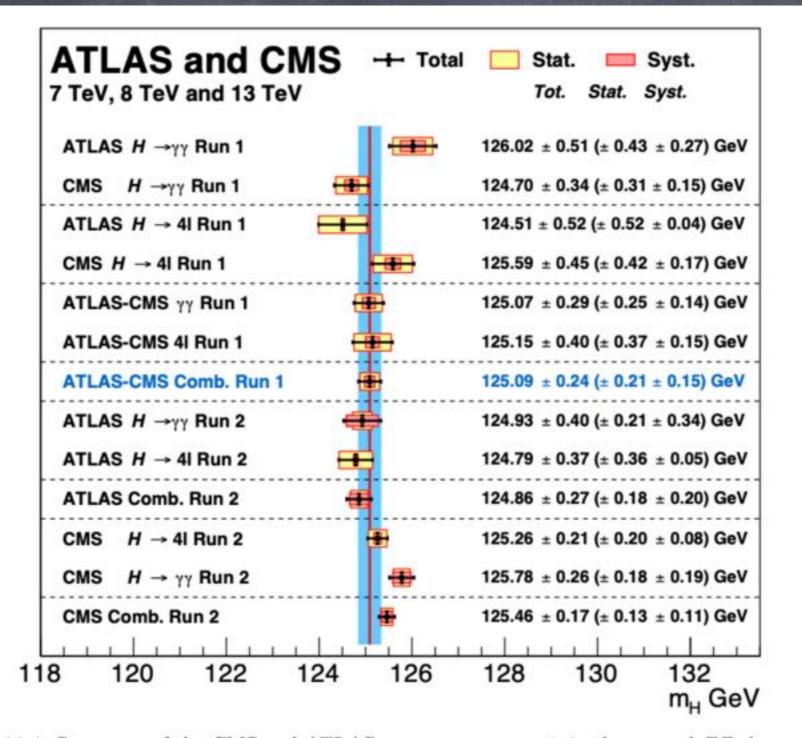


Figure 11.4: Summary of the CMS and ATLAS mass measurements in the $\gamma\gamma$ and ZZ channels in Run 1 and Run 2.

Status of experimental measurements normalized to the SM predictions

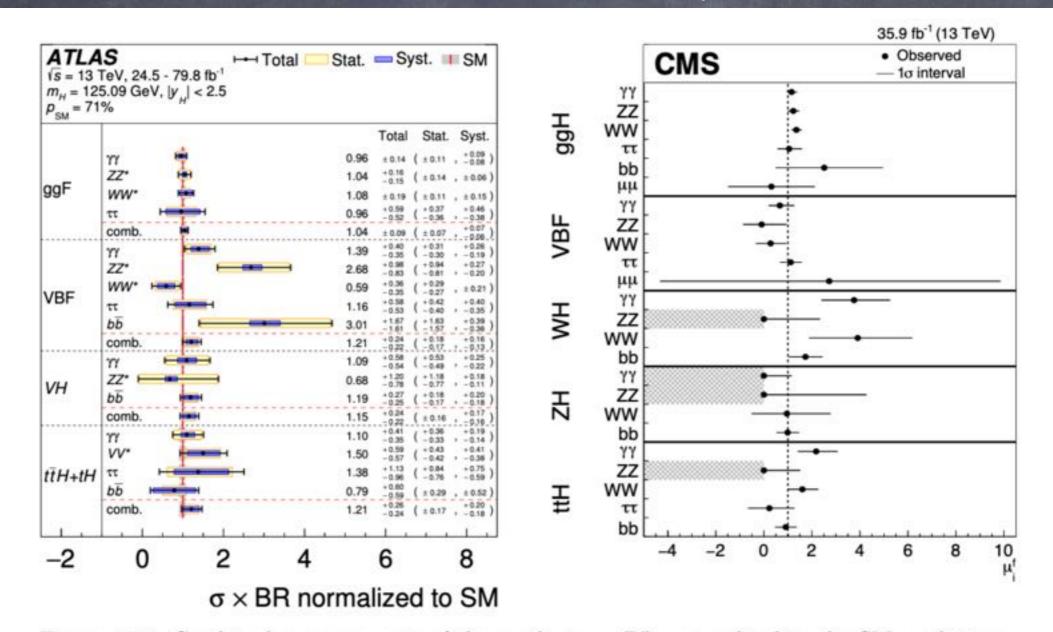


Figure 11.8: Combined measurements of the products $\sigma \cdot BR$, normalised to the SM predictions, for the five main production and five main decay modes. The hatched combinations require more data for a meaningful confidence interval to be provided.

Various constrains on the unitary triangle

Neutral K/B meson mixingsNeutral B meson mixings and B meson decays **B** factories, LHCb 0 experiments More information from lectures by Prof. C.D. Lü in this school

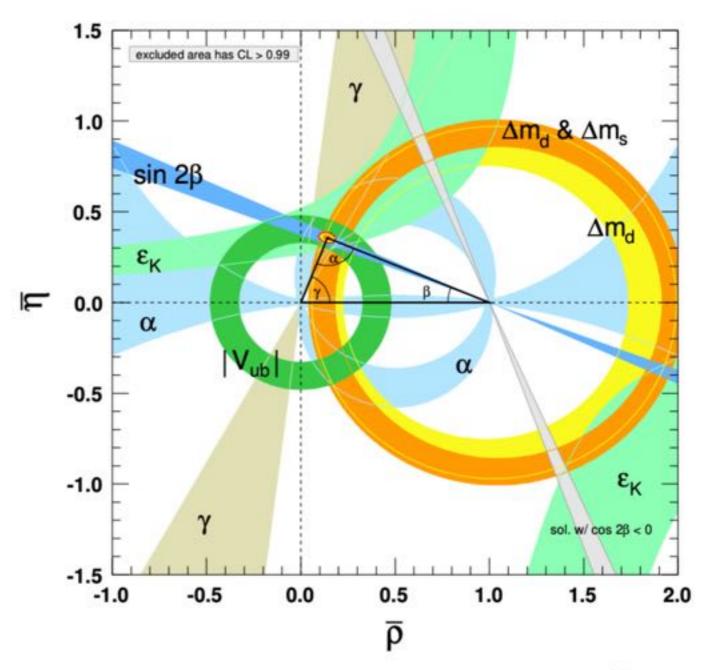
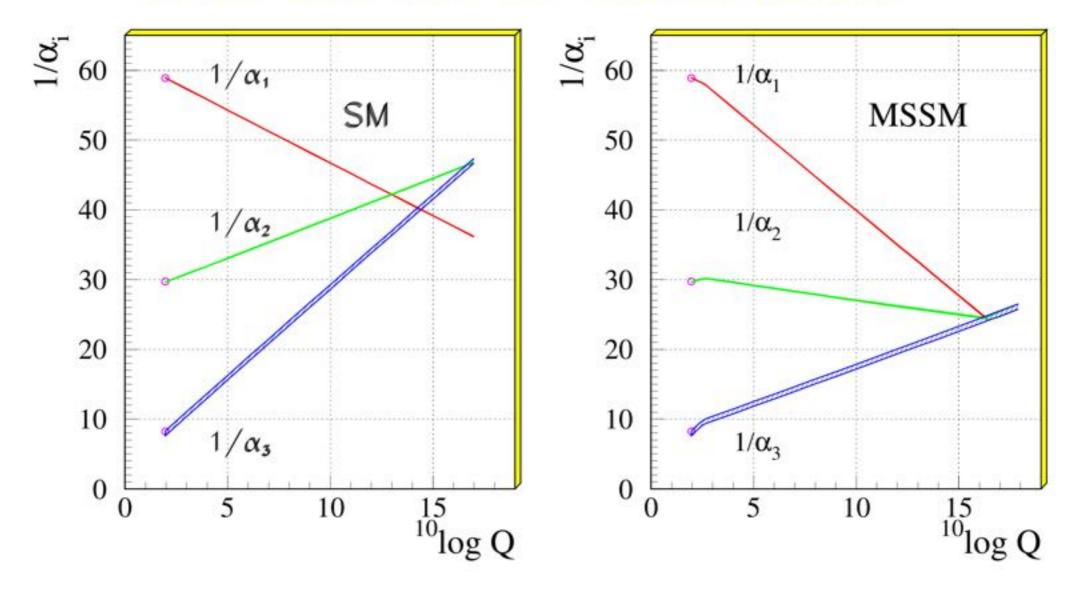


Figure 12.2: Constraints on the $\bar{\rho}, \bar{\eta}$ plane. The shaded areas have 99% CL.

Review of the SM, PDG2020

Unsatisfying issues of the SM

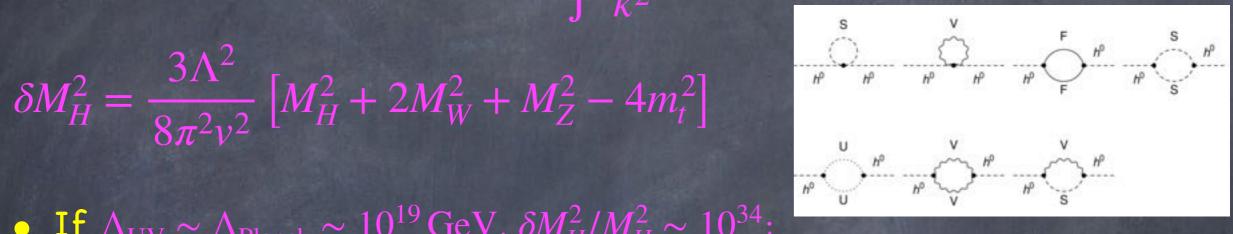
- Theoretical side
 - Why $SU_C(3) \otimes SU_L(2) \otimes U_Y(1)$? Gauge couplings unification? Grand unification theory?
 - Why three generations? What's the origin of the patterns of quark/ lepton masses and mixings? What's the property/origin of the neutrino masses?


- Is the Higgs boson discovered at LHC the ONLY guy to be responsible for the electro-weak symmetry breaking (EWSB)? Two Higgs doublets model/SUSY/Composite Higgs/Extra Dimension/ Little Higgs/Technicolor/...
- Hierarchy problem/Fine tuning problem/Naturalness
- Strong CP problem ...

Experimental/observational data (most from astronomy/cosmology)
 Dark matter/dark energy/inflation/matter-anti-matter asymmetry
 See lectures given by Q.Wang, Y.G.Gong, Z.Z.Xianyu,
 <u>B.Q.Ma, B.Zhu, J.J.Cao, Z.H.</u> Zhao etc in this school

Flavor symmetries/See-saw/String theory?

Gauge couplings running in the SM/MSSM


Unification of the Coupling Constants in the SM and the minimal MSSM

Within the SM, no gauge coupling unification! SUSY can help! see X.G.Wu's lectures for RG running

Hierarchy problem

Radiative quadratic divergence in Higgs self-energy 0 $M_H^2 = \left(M_H^0\right)^2 + \delta M_H^2, \quad \delta M_H^2 \propto \left[\frac{d^4k}{k^2} \sim \Lambda_{\rm UV}^2\right]$

• If $\Lambda_{\rm UV} \sim \Lambda_{\rm Planck} \sim 10^{19} \,{\rm GeV}, \, \delta M_H^2 / M_H^2 \sim 10^{34};$

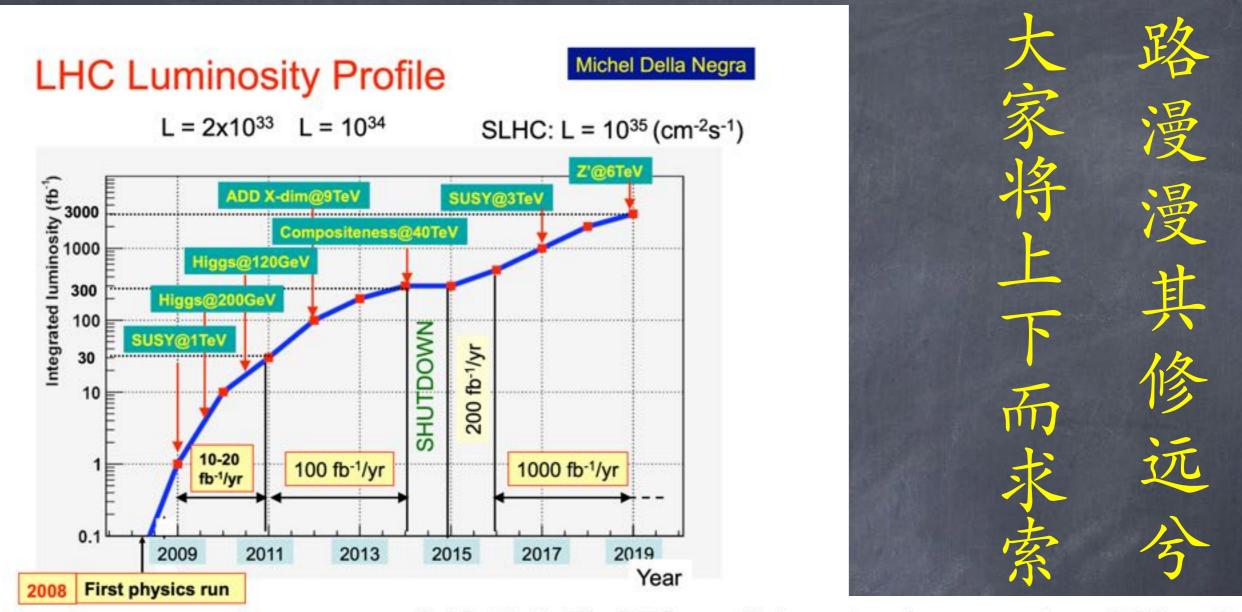
⇒ Hierarchy problem/fine tuning problem/naturalness problem

- Many solutions: see next slide
- SUSY can help! The signs of the quadratic divergence from bosons and fermions are opposite! The super symmetry (SUSY) is a symmetry between bosons and fermions! Bosons \iff Fermions see Z.Sun's lectures for more

Solutions to HP

- 1. Supersymmetry
- 2. Global symmetry
- 3. Discrete symmetry
- 4. Modular invariance
- 5. RS/Technicolor
- 6. LED/1032xSM
- LST/Clockwork
- 8. Classicalization

- 9. Disorder
- 10. Anthropics
- 11. Relaxation
- 12. NNaturalness
- 13. Crunching away
- 14. Conformal symmetry
- 15. Asymptotic fragility
- 16. Agravity


- 17. Lee-Wick Theory
- 18. Weak gravity conjecture
- 19. Non-commutative QFT
- 20. Weak scale from CC
- 21. AdS magic
- 22. Self-organized criticality
- 23. ...

With apologies for the many omissions...

Summary: SM is good, NP is better?

The Standard Model is successful!
We are not satisfied!
Enjoy the school!

Thank you!

Table 11.4: The LHC *pp* collision centre-of-mass energies and delivered data samples.

Year	\sqrt{s} (TeV)	\int L.dt (fb ⁻¹)	Period
2010	7	0.04	Run 1
2011	7	6.1	Run 1
2012	8	23.3	$\operatorname{Run} 1$
2015	13	4.2	$\operatorname{Run} 2$
2016	13	40.8	$\operatorname{Run} 2$
2017	13	50.2	$\operatorname{Run} 2$
2018	13	60.6	$\operatorname{Run} 2$